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Introduction: Electric properties such as permittivity and conductivity can be measured by MR using spatial information of B1'. In MR electric
property tomography (MREPT), conductivity mainly on B1 phase (2~ B1*)* which can be measured by spin-echo (SE) or balanced steady-state free
precession (bSSFP) sequences under the assumption that transmit and receive B1 phases are identical’. The bSSFP sequence is preferred since it
provides higher time-efficiency and signal-to-noise ratio (SNR). However, bSSFP suffers from banding artifacts due to off-resonance effect which can
be more significant for abdomen imaging in high tesla scanner beyond 1.5T. Banding artifacts appear as black bands in magnitude image and stair-
like pattern in phase image. Previous studies were done to compensate the magnitude banding artifacts using RF phase-cycled images®. Here, we
present a phase unbanding technique for conductivity reconstruction focused especially on liver imaging.

Methods: Phase-based conductivity value can be derived by calculating Im{Ae"/e'”}/2upw (1) where ¢ is Bl phase (uo: air permeability, w:
frequency). Phase information of bSSFP image shows slow varying pattern due to its balancing and refocusing properties. At the banding boundaries,
step-wise m discontinuities can be observed (Fig.1b). This constant phase difference does not affect phase-based conductivity processing since it uses
Laplacian of B1. However, there exist discontinuities at the banding boundaries due to noise-like magnitude data which result in artifacts in
conductivity image (Fig.1c). To reduce the artifact, a phase unbanding process is suggested that fills the phase information at the boundary. Our
proposed procedures are shown in Fig.1d-f. The first step is to make a flat region mask by extracting banding boundaries from the gradient of phase
image (Fig. 1d). The next step is a phase balancing step (Fig.le) which adds or subtracts m phase at each region which were segmented in step 1
(Fig.1le). Finally, fill the boundary regions with a 2D second-order fitting (Fig.1f). Since conductivity is dominated by the second-order term of phase
a simple 2D second-order polynomial fitting is used to fill the banding boundaries. All experiments are performed on a 3T scanner (Tim Trio,
Siemens Medical Solutions, Erlangen, Germany) with TrueFISP sequence. The imaging parameters are TR/TE = 4.0/2.0ms, FA=60°, resolution = 2.0
x 2.0 mm?, slice thickness = 5.0 mm and readout bandwidth = 1260Hz/pixel. The cylindrical phantom is filled with NaCl solution which has 2.0 S/m
(left), 1.5 S/m(center) and 1.0 S/m (right). For phantom experiment, first-order shim values are arbitrary controlled to generate banding artifact
artificially. Liver image of healthy volunteer is acquired with exhaled breath-hold situation to avoid motion-induced artifact and to reduce field
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Figure 1. a: Magnitude image.

b: Phase image. ¢: Conductivity
image without phase unbanding.
d: Mask image using gradient of
phase information.

e: Phase balancing using (d).

f: Polynomial fitting result by
filling discontinuous part.

g: Conductivity image with (f).
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proposed  unbanding  technique, a

conductivity of phantom is well-
reconstructed (Fig.1g) compared to
direct conductivity reconstruction
(Fig.1c). In in vivo liver experiment,
banding artifacts are observed
(Fig.2a). Without the proposed
unbanding process, abnormally high
conductivity values are observed in d
the reconstructed conductivity image
due to presence of banding (Fig.2b).
These high estimated values were |
corrected using our proposed method.
However, some  residual errors
following fitting error still seem to be
observable in Fig.2c.

Conclusion: Phase-based conductivity
imaging using bSSFP is stabilized by
compensating banding boundary by the
proposed unbanding method in phantom ]

and invivo liver experiments. In conductivity reconstruction, a large size smoothing filter is an integral part due to its high sensitivity to noise.
Conductivity distortion due to banding artifact gets more significant when applying a smoothing filter. More robust unbanding processes should be
developed to overcome the artifacts such as by extending the proposed technique to three-dimension fitting. The proposed unbanding technique can
be useful for alleviating conductivity estimation error using bSSFP sequences in high field scanners.
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Figure 2. Liver bSSFP
1.0 image (a) with banding
phase unbanding..
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