## Comparison of data approximation methods used in MR-based tissue electrical property mapping – a simulation study

Selaka Bulumulla<sup>1</sup>, Seung-kyun Lee<sup>1</sup>, and Ileana Hancu<sup>1</sup>

<sup>1</sup>GE Global Research, Niskayuna, NY, United States

Target audience: Research personnel interested in methods to image conductivity and permittivity using magnetic resonance imaging

**Purpose:** Calculation of electrical properties from B1+ maps is a potentially powerful method for noninvasive imaging of conductivity and permittivity. The method accurately calculates conductivity and permittivity when complex B1+ maps are available in the region of interest<sup>1</sup>. Since B1+ phase is not directly available in an MRI scan with conventional hardware, various approximation schemes have been proposed<sup>2-5</sup>. In this work we compare four such methods in terms of accuracy of electrical property calculation using analytical and numerical simulation models.

| Method      | Magnitude of B       | Phase of B                |
|-------------|----------------------|---------------------------|
| 1 (ideal)   | $ B_1^+ $            | $\angle B_1^+$            |
| 2 (ref 2,3) | $ {\bf B}_1^+ $      | <i>φ</i> <sub>TR</sub> /2 |
| 3 (ref 4)   | $ {\bf B_1}^+ $      | 0                         |
| 4 (ref 4)   | 1                    | $\phi_{\rm TR}$ /2        |
| 5 (ref 5)   | $sqrt( B_1^+B_1^- )$ | $\phi_{\rm TR}/2$         |

**Methods**: All the methods considered here can be interpreted as the electrical properties being calculated from the Laplacian of a complex quantity through  $(\nabla^2 B)/B = -\mu\epsilon_r\epsilon_0\omega^2 + i\mu\sigma\omega$ , where  $\epsilon_r$  and  $\sigma$  are the relative permittivity and conductivity to be measured, respectively. The quantity B, which is ideally the complex B1+ map, is approximated differently in different methods as summarized in Table 1. All

**Table 1.** Definition of different methods considered. Transceiver phase  $\phi_{\Gamma R}$  is the phase of the product  $B_1^+B_1^-$ .

quantities in Methods 2-5 are MR-measureable. In particular, the transceiver phase  $\phi_{\Gamma R}$  can be equated to the spin echo image phase. Methods 4-5 do not require dedicated B1+ mapping<sup>4</sup>. In Method 5, the amplitude of the product of B1+ and B1- can be obtained from a low-flip-angle gradient echo image with minimized relaxation contrast<sup>5,6</sup>. Our comparative investigation consisted of simulating complex, 3-dimensional B1+ and B1- maps for a transmit-receive birdcage coil applied to three models (infinite cylinder, human head, and torso/breast model), and for each model computing  $\epsilon_r$  and  $\sigma$  according to Table 1. All comparisons were done at 128MHz (3.0 T).

**Infinite cylinder** A 10 cm-diameter uniform cylinder with three different pairs of  $(\epsilon_r, \sigma)$  was simulated. The B1+, B1– fields were calculated analytically<sup>7</sup> in the axial cross section.

*Human head model* For this and the following models, B1+, B1– fields were simulated using HFSS (ANSYS, PA, USA). Only

Methods 1, 2, 5 were compared. The head model had two compartments, brain and muscle (outer layer).

*Torso/breast geometrical model* This was a geometrical model with two compartments, torso and breasts.

**Results:** Figure 1 shows that for a highly symmetric case of a uniform cylinder, Methods 2, 5 produce the same electrical properties as does the ideal case (Method 1). The magnitude-only and phase-only methods performed poorly for the cases of  $(\epsilon_r, \sigma) = (50, 0.5)$  and  $(\epsilon_r, \sigma) = (90, 0.9)$ . Table 2 summarizes calculated average electrical properties in different tissue compartments in



**Figure 1.** Electrical properties calculated for an infinite cylinder displayed along a diagonal line. All properties are axi-symmetric. The horizontal axis for each subfigure runs from –5 to 5 [cm]. The vertical axes for  $\epsilon_r$  and  $\sigma$  run from 0 to 150, and 0 to 1.5 [S/m], respectively. All scales are linear. True parameters are: top row, ( $\epsilon_r$ , $\sigma$ ) = (10,0.1); center row, ( $\epsilon_r$ , $\sigma$ ) = (50,0.5); bottom row, ( $\epsilon_r$ , $\sigma$ ) = (90,0.9).

|             | Model          |       | Method 1       |       | Method 2       |       | Method 5       |       |
|-------------|----------------|-------|----------------|-------|----------------|-------|----------------|-------|
| Tissue      | ε <sub>r</sub> | σ     |
| brain       | 68             | 0.54  | 65.9           | 0.58  | 65.8           | 0.58  | 65.8           | 0.57  |
| outer layer | 64             | 0.74  | 59.9           | 0.75  | 59.5           | 0.76  | 59.6           | 0.75  |
| torso       | 45             | 0.50  | 43.6           | 0.50  | 44.9           | 0.51  | 42.6           | 0.50  |
| breast      | 10/            | 0.15/ | 10.1/          | 0.15/ | 11.9/          | 0.18/ | 9.6/           | 0.16/ |
| (R/L)       | 10             | 0.15  | 10.1           | 0.15  | 5.9            | 0.14  | 9.6            | 0.16  |

**Table 2.** Electrical properties from simulated  $B_1^+$  maps in head and torso/breast models

head and torso/breast models. Methods 2 and 5 perform similarly for head, but shows significant difference for the torso/breast model. Compared with the ideal case (Method 1), Method 5 works better to produce more accurate average  $\epsilon_r$  and  $\sigma$  in the case of the torso/breast model, specifically in left/right breasts. Comparison of results between Methods 1 and 5 are shown in Fig. 2.

**Discussion:** Noise-free simulation as is reported here represents the first step towards more comprehensive comparison of different methods of data acquisition for MR-based electrical property mapping. We found that, when applied to noise- and contrast-free simulation models, the square-root-image-based method<sup>5</sup> (Method 5) performed well, in the case of rotational symmetric model in the axial plane as well as rotationally asymmetric model (torso/breast). Sensitivity to noise, image artifacts and contrast will be the subject of future investigation.

**Conclusion:** Out of the several data acquisition methods considered, use of sqrt(|B1+B1-|), which may be obtained from a low flip angle gradient echo image and transceiver phase, appears to be a promising method to estimate conductivity and permittivity.

Acknowledgement: This work was supported in part by the NIH grant 1R01CA154433-01A1.

**References:** [1] Bulumulla S. et al, Proc ISMRM 17 (2009), 3043 [2] Katscher U. et al, IEEE Trans Med Imaging 28:1365 (2009) [3] Bulumulla S. et al, Concepts Magn Reson 41B:13 (2012) [4] Voigt T. et al, MRM 66:456 (2011) [5] Lee S-K. et al, ISMRM 2013 submitted [6] Wang J. et al, MRM 53:408 (2005) [7] Glover G. et al, JMR 64:255 (1985)

Acknowledgement: This work was supported in part by the NIH grant 1R01CA154433-01A1.



**Figure 2.** Conductivity [S/m] (left) and relative permittivity (right) maps in the head from (a) Method 1 and (c) Method 5 and torso/breast model from (b) Method 1, and (d) Method 5