Evaluation of Hepatic Focal Lesions Using Diffusion-weighted MR Imaging: comparison of apparent diffusion coefficient and intravoxel incoherent motion derived parameters Jeong Hee Yoon¹ and Jeong Min Lee¹ Seoul National University Hospital, Seoul, Seoul, Korea Target audience: audience who are interested in body DWI, intravoxel incoherent motion model **PURPOSE:** To determine whether parameters obtained from intravoxel incoherent motion (IVIM)-diffusion-weighted imaging (DWI) using multiple b-values can improve characterization of common focal liver lesions (FLLs), compared with the apparent diffusion coefficient (ADC). **MATERIALS AND METHODS:** Our institutional review board approved this retrospective study, and informed consent was waived. One hundred forty two patients with 169 FLLs underwent liver MR including IVIM-DWI with multiple b factors at 3.0T. ADC_{total} and IVIM-DWI-derived parameters including true diffusion (D_t), pseudodiffusion (D_p), and perfusion fraction (f) were calculated for each lesion and compared using dedicated software. **RESULTS:** D_t and ADC_{total} were significantly lower in malignancies (0.95±0.21, 1.14±0.24, (x10⁻³mm²/sec)) than in benign FLLs (1.61±0.34, 1.72±0.37, (x10⁻³mm²/sec)). In the differential diagnosis of malignancies from benign lesions, D_t (Az: 0.971) showed better diagnostic performance than ADC_{total} (Az value: 0.933) (p<0.0005). D_t (Az: 0.961) also showed better diagnostic performance than ADC_{total} (Az: 0.919) in differentiating hypervascular malignancies from benign hypervascular FLLs (p<0.0005). In addition, D_p and f were significantly higher in hypervascular FLLs (35.74±20.08(x10⁻³mm²/sec), 28.14±11.82 (%)) than hypovascular FLLs (21.87±13.8(x10⁻³mm²/sec), 12.2±5.92 (%)). **DISCUSSION:** We also believe that D_t may provide more accurate information regarding the cellularity of FLLs, which would be useful in diagnosing hypervascular malignancies compared with conventional ADC; in conventional ADC maps, perfusion contribution in hypervascular malignancies leads to increasing ADC values and may lower the diagnostic performance of DWI for characterization of FLLs. **CONCLUSION:** D_t provided better diagnostic performance than ADC_{total} in differentiating benign from malignant le sions. D_p and f were significant parameters for diagnosing hypervascular FLLs. A 3.2cm surgically confirmed HCC in 59-year-old man. The mass (arrow) shows a high SI on DWI (b factor, 800 sec/mm²) (a). The tumor showed slightly lower ADC value than surrounding liver parenchyma on ADC_{total} map (b), and D_t was obviously lower than liver parenchyma on D_t map (c).