In vivo High Resolution Renal Diffusion MRI: Diffusion-prepared Balanced Steady State Free Precession (Diffu-prep bSSFP)

Christopher Nguyen ${ }^{1,2}$, Zhaoyang Fan ${ }^{1}$, Behzad Sharif ${ }^{1}$, Rohan Dharmakumar ${ }^{1}$, Rola Saouaf ${ }^{3}$, Hyung L Kim ${ }^{4}$, and Debiao $\mathrm{Li}^{1,2}$
${ }^{1}$ Biomedical Imaging Research Institute, Cedars Sinai Medical Center, Los Angeles, CA, United States, ${ }^{2}$ Bioengineering, University of California, Los Angeles, Los Angeles, CA, United States, ${ }^{3}$ Radiology, Cedars Sinai Medical Center, Los Angeles, CA, United States, ${ }^{4}$ Urology, Cedars Sinai Medical Center, Los Angeles, CA, United States

Introduction: Abdominal diffusion MRI has the potential to characterize benign or malignant tumors in various organs including the kidneys, liver, pancreas, and prostate [1]. Magnetic susceptibility, low SNR, and low spatial resolution have been the primary challenges for the conventional diffusion-weighted single shot echo planar imaging (DW SS EPI). To combat these limitations, multi-shot approaches have been explored to reduce the echo train length to allow for higher spatial resolution and less susceptibility artifacts [2,3,4]. We propose a novel application of diffusion-prepared balanced steady-state free precession (Diffu-prep bSSFP) [5] to yield high resolution, high SNR, and low distortion DW images of the kidneys.
Materials and Methods: In vivo volunteer experiments ($\mathrm{n}=9$) were performed at 3T (MAGNETOM Verio, Siemens) with Diffu-prep bSSFP (TR/TE=233.2/1.3 ms, FOV $=384 \times 384 \mathrm{~mm}^{2}, 256 \times 256$ matrix, $1.5 \times 1.5 \times 3 \mathrm{~mm}^{3}, \mathrm{TE}$ prep $=60 \mathrm{~ms}, \mathrm{~b}=0,400 \mathrm{~s}^{1} \mathrm{~mm}^{-}$ ${ }^{2}$, timing diagram shown in Fig. 1), conventional DW SS EPI (TR/TE $=1500 / 60 \mathrm{~ms}, \mathrm{FOV}=384 \mathrm{x} 384 \mathrm{~mm}^{2}, 128 \times 128$ matrix, $3 \times 3 \times 7 \mathrm{~mm}^{3}$, iPAT factor $=2, b=0,400 \mathrm{~s}^{1} \mathrm{~mm}^{-2}$), and product T1w FLASH anatomical sequence. The DW imaging was done within 1-2 breath holds to ensure full coverage. Diffusion encoding was prescribed along readout direction for all experiments with a coronal image orientation. ADC maps were calculated offline assuming a monoexponential fit in Matlab. Manual segmentation of the entire kidney was used to calculate the mean and standard deviation of the ADC values for each volunteer.
Results: The mean and standard deviation of the mean ADC values derived for the 9 volunteers was $2.36 \pm 0.251 \times 10^{3} \mathrm{~mm}^{2} \mathrm{~s}^{-1}$ (Diffu-prep bSSFP) and $2.42 \pm 0.256 \times 10^{3} \mathrm{~mm}^{2} \mathrm{~s}^{-1}$ (DW SS EPI) without any significant difference ($\mathrm{p}=0.447$). Fig. 2 shows a T1w image, typical $b=0 s^{1} \mathrm{~mm}^{-2}, b=400 \mathrm{~s}^{1} \mathrm{~mm}^{-2}$, and accompanying ADC map for Diffu-prep bSSFP (Fig. 2 a,d,e,f). For DW SS EPI, Fig. 2 depicts in the same slice at $b=400 \mathrm{~s}^{1} \mathrm{~mm}^{-2}$ and ADC map (Fig. $2 \mathrm{~b}, \mathrm{c}$). The red arrows highlight a small benign hemorrhagic renal lesion (confirmed by the T1w and $\mathrm{T} 2 \mathrm{wb}=0 \mathrm{~s}^{1} \mathrm{~mm}^{-2}$ images). Because of the higher resolution, Diffu-prep bSSFP clearly reveals the lesion with an expected reduced ADC value ($1.18 \times 10^{3} \mathrm{~mm}^{2} \mathrm{~s}^{-1}$). While DW SS EPI illustrates classic partial volume effect, where the lesion can be barely identified with a lesser reduction in ADC value ($1.44 \times 10^{3} \mathrm{~mm}^{2} \mathrm{~s}^{-1}$).
Conclusion: We have shown the feasibility of using diffusion-prepared acquisitions to derive high resolution, high SNR, and low distortion DW images of the human kidneys by employing Diffu-prep bSSFP. ADC values acquired from the 9 volunteers are consistent with prior in vivo human renal diffusion studies and DW SS EPI derived values [6]. For abdominal applications, multi-shot bSSFP readout has the potential to offer better image quality, higher resolutions, and higher SNR over conventional EPI-based sequences while maintaining the quantitative power of diffusion MRI.
[1] Koh, et al. Am J Roent 199:252-262 (2012). [2] Pipe, et al. MRM 47:42-52 (2002) [3] Butts, et al. MRM 35:763-770(1996) [4] Gudbjartsson, et al MRM 36:409-519 (1996) [5] Jeong, et al. MRM 50:821 (2003) [6] Thoeny, et al. Radiology 259:25-38 (2011)

Fig. 1 (bottom) Timing Diagram with twice refocused spin echo diffusion encoding

Fig. 2 (right) T1w, (a) DW SS EPI (b) b=400 $s^{1} \mathrm{~mm}^{-2}$ (c) ADC map, Diffu-prep bSSFP (d) b=0 $s^{1} \mathrm{~mm}^{-2}$ (e) $b=400 \mathrm{~s}^{1} \mathrm{~mm}^{-2}$ (f) ADC map

