An Optimized Room-Temperature RF-Surface Resonator for In vivo Potassium-39 MRI at 9.4 T - Simulation and Measurement Study for Cryogenic Coils

Ibrahim A. Elabyad¹, Raffi Kalayciyan¹, Nagesh Shanbhag², Lothar Schilling², and L. R. Schad¹

¹Computer Assisted Clinical Medicine, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany, ²Division of Neurosurgical Research, Medical

Faculty Mannheim, Heidelberg University, Mannheim, Germany

INTRODUCTION: Recent MRI studies of the Tissue Sodium-23 (²³Na) Concentration (TSC) revealed that an irreversible increase in local TSC occurs in permanently-damaged stroke tissue [1]. Nevertheless, monitoring the intracellular ²³Na concentration via Multiple Quantum Coherence (MQC) filters [2] or chemical shift reagents [3] proved to be difficult up-to-date. On the other hand, since intracellular Potassium (39K) concentration is ~15 times higher than in the extracellular compartment, ³⁹K-Magnetic Resonance Imaging (³⁹K-MRI) could provide direct information about pathological changes in intracellular ion concentrations after ischemic stroke. However, ³⁹K-MRI suffers from 2.1 million times lower signal-to-noise ratio (SNR) compared to ¹H-MRI which is caused by ~20 times lower gyromagnetic ratio, and the much faster T_2^* decay [4]. In a recent study, a triple resonant resonator setup (¹H, ²³Na, and ³⁹K) was used to acquire a first in vivo ³⁹K image of the rat head at 9.4 T [5]. Yet, the SNR can be significantly increased by using a single-tuned surface resonator. Furthermore cryogenic cooling could be advantageous at this low resonance frequency (18.7 MHz) and small resonator dimensions (< 30 mm in diameter) [6], [7]. In this study, a singletuned ³⁹K surface resonator was developed and tested for the measurement of ³⁹K signal of a healthy live rat brain at room-temperature (RT). In order to estimate the benefits of cryogenic cooling at 77 K and 20 K, the optimal coil geometry, the optimal coil diameter, and temperature were determined in order to maximize the receiver SNR gain for ³⁹K-MRI at 9.4 T. The EM-simulations were validated at 293 K and 77 K for the optimal coils through bench level measurements. MATERIALS AND METHODS: A single-loop double-tuned ³⁹K (18.7 MHz) RF-surface coil of 25-mm diameter was developed as shown in Fig. 1. A variable capacitor of 1-120 pF and three fixed capacitors of (1000 pF, 200 pF, and 160 pF) were connected in parallel to tune the coil at the resonance frequency of 18.7 MHz. The RF-coil was matched by inductive coupling to the 50Ω signal line. The loaded/unloaded Q-factor ratio was measured to be 186/198. In order to geometrically decouple the developed single-loop surface coil from the ¹H birdcage linear resonator (Bruker BioSpin GmbH, Ettlingen, Germany), the B₁-field vector of the birdcage was orthogonally arranged to the surface coil's normal vector. No change in Q-factor was observed when both resonance structures were combined to form the double-resonant coil system. ¹H T_2 -weighted images were acquired using a multi slice multi echo (MSME) sequence with TR = 1000 ms, TE = 14 ms, (0.3x0.3) mm² in-plane resolution with 16 axial slices of 2 mm thickness and an inter-slice distance of 2 mm. The total measurement time (TA) was 4 min and 16 sec. A 3D Chemical Shift Imaging (CSI) sequence was used for ³⁹K-MRI to achieve a voxel resolutions of 2x2x2 mm³ (after two-fold 3D zero-filling), TR = 20 ms, and TA = 30 min. The in vivo experiments were carried out under appropriate animal license and ethics approval. One adult female rat (~380 g) was scanned in vivo. The ¹H edge image was superimposed onto the ³⁹K image using a routine written in MATLAB[®]. Full-wave Electro-Magnetic (EM)-simulations were performed using CST® Micro Wave Studio (CST AG Darmstadt, Germany) for three-coil geometries of (single-loop, spiral-two-turn, and spiral-three-turn) surface resonators with the same effective coil diameter (deff) at 293 K, 77 K, and 20 K, respectively. For all coils, 1.5-mm wire thickness was selected. The copper conductivity was set to σ_{RT} =5.7x10⁷ S/m at 293 K, σ_{CT} =4.65x10⁸ S/m at 77 K, and σ_{CT} =357x10⁸ S/m at 20 K, respectively [8]. The S₁₁- return loss (reflection measurement on a network analyzer) was simulated and measured for all coils and the Q-factors were evaluated in both loaded and unloaded conditions. The sample load was modelled by a cylindrical phantom with ε_{t} =78, σ =0.45 S/m, 30-mm diameter, and 80-mm length. All coils were tuned and matched to the resonance frequency of ³⁹K-MRI at 9.4 T (18.7 MHz). The selected input power was 1W for all coils. To validate the accuracy of the EM-simulations for all coil geometries at 239 K and 77 K, (10-surface resonators for each type) were built in house and compared via bench level measurement methods. To measure the Qfactors at 293 K and 77 K, all resonators were matched by inductive coupling and tuned at 18.7 MHz and measured from the S₁₁-return loss. The unloaded Qfactors at 77 K were measured by immersing each coil inside an insulating polystyrene foam box filled with liquid nitrogen (LN_2) . Port 1 of the network analyzer was connected with an inductive coupling loop to match the coils inside LN_2 . The SNR gains for all coils were estimated using the following equations [6], [7], [9]:

$$\frac{\text{SNR}_{\text{CT}}}{\text{SNR}_{\text{RT}}} = \sqrt{\frac{R_{\text{coil,RT}} T_{\text{coil,RT}} + R_{\text{sample}} T_{\text{sample}}}{R_{\text{coil,CT}} T_{\text{coil,CT}} + R_{\text{sample}} T_{\text{sample}}}}$$
(1)

$$\frac{\text{SNR}_{\text{CT}}}{\text{SNR}_{\text{CT}}} = \sqrt{\frac{\text{RT} \cdot Q_{\text{coil,RT}}^{-1} + \text{RT} \cdot Q_{\text{sample}}^{-1}}{R_{\text{coil,CT}} + \text{RT} \cdot Q_{\text{sample}}^{-1}}}$$
(2)

$$\frac{\mathrm{SNR}_{\mathrm{CT}}}{\mathrm{SNR}_{\mathrm{RT}}} = \sqrt{\frac{\mathrm{RT} \mathcal{Q}_{unloaded,\mathrm{RT}} + \mathrm{RT} \mathcal{Q}_{sample}}{\mathrm{CT} \mathcal{Q}_{unloaded,\mathrm{CT}}^{-1} + \mathrm{RT} \mathcal{Q}_{sample}^{-1}}} \qquad (2)$$

 $Q_{sample}^{-1} = Q_{loaded}^{-1} - Q_{unloaded}^{-1}$ (3)

Once the steady state of the EM-simulation at each temperature was obtained, the *Q*factors were evaluated in both loaded and unloaded conditions. Both coil and sample resistances can be evaluated as follows: $R_{coil}=\omega L/Q_{unloaded}$ and $R_{sample}=\omega L$ [1/ Q_{loaded} – 1/ $Q_{unloaded}$]. The sample temperature T_{sample} was assumed to be 305 K [6], [9]. **RESULTS AND DISCUSSION:**

The ¹H and ³⁹K images are shown in Fig. 2. The SNR achieved in the ³⁹K images was 35 ± 13 in (4x4x4) mm³ voxel size and 30 min acquisition time. Previously a SNR of 4 was achieved in similar *in vivo* experiment of a healthy live rat brain using a 3D FLASH sequence, (3x3x6) mm³ voxel size and 54

Fig. 2. ¹H image (first column), ³⁹K SNR-map (second column), and the superimposed ¹H edge image with ³⁹K image (third column).

min acquisition time [5]. Hence, the herein used CSI technique in conjunction with improved resonator sensitivity achieved approximately eight times higher SNR in half the acquisition time. The simulated and measured *Q*-factors and the corresponding SNR gains for RF-coils of d_{eff} 18-mm are listed in Table I. For multi-turn spiral coils, the predicted sensitivity gain decreases compared to a single-loop coil of the same size because both R_{coil} and R_{sample} increase with increasing the coil size and the number of turns. Cryogenic cooling of the optimal single-loop cooper coil of 18-mm diameter could further improve the SNR gain three-fold at 77 K and up to six-fold at 20 K. These significant results could further improve the available signal in future ³⁹K-MR imaging studies of the rat brain at 9.4 T.

<u>CONCLUSION</u>: The single-loop coil is the optimal coil geometry at 293 K, 77 K, and 20 K. Cryogenic cooling of the optimal resonator can improve the SNR up to six-fold at 20 K indicating that the ³⁹K-MRI signal in cerebral tissue of the rat can be spatially resolved with (2x2x2) mm³ voxel size in 10 min acquisition time.

Coil Type	Simulated					Measured					
d _{eff} (18-mm)	293 K	77 K		20 K		293 K			77 K		
	Q_L/Q_U	Q_L/Q_U	SNR _{gain}	Q_L/Q_U	SNR _{gain}	Q_{I}/Q_{U}	R _c T _c	R _s T _s	Qu	R _c T _c	SNR _{gain}
Single-Loop	131/133	385/422	3.22	1858/3746	7.58	147/150	7.93	0.17	319	0.96	2.68
Spiral-Two-Turn	155/168	428/525	2.54	1585/4586	3.54	185/193	16.93	0.75	464	1.82	2.62
Spiral-Three-Turn	168/186	455/591	2.41	1443/5236	3.18	257/272	28.75	1.72	668	3.01	2.54

REFERENCES: [1] Wetterling *et al.*, MRM 67, 740-749 (2012). [2] Tyson *et al.*, Stroke 27, 957-964 (1996). [3] Heiler *et al.*, JMR 34, 935-940 (2011). [4] Parrish *et al.*, MRM 38, 653-661 (1997). [5] Augath *et al.*, JMR 200, 134–136 (2009). [6] Darrasse *et al.*, BIOCHIMIE 85, 915–937 (2003). [7] Wright *et al.*, MRM 43, 163–169 (2000). [8] Thompson *et al.*, Cryogenic properties of copper. NIST, Boulder, Colorado (1990). [9] Hu *et al.*, IEEE I&M 61, 129–139 (2012).