Brain metabolites diffuse "freely" in white and grey matters: new insights into cellular architecture by diffusion-weighted **spectroscopy in the Human brain.** Chloé Najac^{1,2}, Francesca Branzoli³, Itamar Ronen³, and Julien Valette^{1,2}

¹CEA-MIRCen, Fontenay-aux-Roses, France, ²CEA-CNRS URA 2210, Fontenay-aux-Roses, France, ³C. J. Gorter Center for High Field MRI, Department of

Radiology, Leiden University Medical Center, Leiden, Netherlands

Target audience

This work should be of interest for researchers investigating how diffusion-weighted NMR spectroscopy may be used to characterize brain cell geometry in vivo.

Due to the specific intracellular compartmentation of brain metabolites, diffusion-weighed (DW) ¹H NMR spectroscopy is a powerful tool to investigate brain intracellular space in vivo [1]. The apparent diffusion coefficient (ADC) is related to the average quadratic displacement $\langle x^2 \rangle$ during the diffusion time t_d . In vivo, geometrical constraints due to cell membranes and subcellular structures hinder the translational displacement of metabolites. If diffusion time is long enough, restriction by cell walls is expected to have a significant impact on the ADC [2], with metabolite ADC decreasing towards an asymptotic value which depends on cell geometry. In long and thin fibers isotropically distributed, after an initial fast decrease from D_{intra}/3, metabolite ADC should remain stable around D_{intra}/3 (with D_{intra} the intracellular diffusion coefficient). In contrast, it should decrease towards 0 in closed cell bodies. One of our previous study, carried out with t_d varying from 82 ms to 1 s in the monkey brain, revealed that brain metabolite ADC barely depends on t_d , meaning that observed metabolites diffusion essentially reflects unrestricted diffusion, such as occurring in long and thin fibers (axons, dendrites, glial processes...) [3]. Nevertheless, spectra were acquired in a voxel containing equal proportions of white and grey matters, resulting in no tissue specificity. In order to assess potential differences in the dependence of metabolite ADC in both tissues, we decided to explore metabolites diffusion in voxels with various proportions of white matter (WM) and grey matter (GM) in the Human brain, for t_d varying from 100 ms to 720 ms.

Materials and Methods

Experiments: Experiments were performed on a Philips Achieva 7 T MRI scanner (gradient coil reaching 33 mT/m along each axis). A head RF coil (quadrature transmit and 32-channel receive) was used for all measurements. Data were collected from 7 healthy volunteers (age=23±1 years). Two sets of experiments were carried out, either in a 6 mL voxel positioned in parietal white matter, or in a 6 mL voxel positioned in occipital grey matter as shown in Fig. 1. Voxels-of-interest (VOI) were selected using a 3D-T₁weighted image. Shimming was performed using a pencil beam method employing second-order shims. Water and metabolites spectra were acquired using a modified DW-STEAM scheme (TE=50 ms, TR=2-3 cardiac cycles (triggering using PPU), pulse duration 24 ms), for b=0 and 3000 s/mm², at different t_d reached by varying mixing time (TM=80, 530 and 700 ms). To get rid of tissue anisotropy, the trace of the diffusion tensor was actually acquired, with measurements performed along the three orthogonal directions yielding maximal gradient amplitude ([1 1 -0.5], [-0.5 1 1] and [1 -0.5 1]) [4]. Since at long t_d cross-terms between diffusion gradients and other gradients may lead to biased ADC, additional DW-

Fig. 1 Position of a 6 mL voxel in occipital grey matter (A) and parietal white matter (B) on 3D-T1-weighted image. Voxels locations are shown for NAA (red box) and water (yellow box)

spectra were acquired with diffusion gradients of opposite polarity for each direction and each t_d [5]. Spectra were acquired with an increased number of averages to keep similar SNR for each t_d . Processing: Scan-to-scan phasing, frequency drift and eddy current corrections were performed. Spectra were analyzed with LCModel [6] with a different basis-set for each TM. At b=3000 s/mm², the geometric mean of the signal measured with both gradients polarities was calculated. The ADC was finally quantified for three brain metabolites: total NAA (tNAA), total creatine (tCr) and choline compounds (tCho). 3D-T₁-weighted images were segmented using an in-house routine to determine the proportions of GM, WM and cerebrospinal fluid (CSF) in the VOI.

Results

Parietal voxels predominantly reflected WM (85±7% of WM, 14±7% of GM and 2±1% of CSF), whereas occipital voxels predominantly reflected GM (23±6% of WM, 66±10% of GM and 11±1% of CSF). Good quality spectra could be obtained for all t_d and b values, as exemplified on Fig. 2 for $t_d=720$ ms. As already reported [7], metabolite ADC was lower in GM (ADCtNAA=0.108±0.005 µm²/ms, $ADC_{tCr}=0.111\pm0.011 \ \mu m^2/ms$ and $ADC_{tCho}=0.092\pm0.007 \ \mu m^2/ms$, mean and s.d calculated over all subjects and all t_d) compared to WM (ADC_{tNAA}=0.176±0.014 µm²/ms, ADC_{tCr}=0.162±0.009 µm²/ms and ADC_{1Cho}= 0.129 ± 0.016 µm²/ms). No time-dependence of metabolite ADC could be observed, either in WM or in GM (Fig. 3), meaning that observed diffusion is largely unrestricted for these time-scales.

Discussion and Conclusion

The specific compartmentation of metabolites (tNAA in neurons, tCho mainly in astrocytes, and tCr in all cells) opens a unique insight into the different cellular architectures in WM and GM Here, no dependence of the ADC on t_d was observed, neither in predominantly WM, nor in predominantly GM voxels. This stability suggests that the major fraction of brain metabolites diffuses in long fibers rather than in cells bodies. For WM, it is relatively well established that neurons are essentially characterized by long, myelinated axons. Even astrocytes in WM have an elongated form. In this context, the stability of metabolites ADC in WM is largely confirmatory of this fiber-like cell structure. In contrast, the fiber-like stability of metabolite ADC in GM goes against the common intuition of neuronal soma occupying a significant volume fraction. Some additional experiments would be required to perform data modeling and derive values about soma diameters and the relative volume fractions between soma and fibers. This study opens new perspectives for interpreting diffusion measurements in the Human brain. The absence of significant restriction suggests that metabolite ADC may be very sensitive to D_{intras} i.e. to intracellular viscosity, molecular crowding and short distance obstacles (organelle content and intracellular tortuosity), even at relatively long t_d characteristic of clinical scanners. In contrast, variations in cell size may be more difficult to detect within the measurement time-scales of DWspectroscopy achievable on clinical scanners.

[1] Nicolay NMR in Biomed 2001 [2] Tanner and Stejskal J. Chem. Phys. 1968 [3] Najac ISMRM 2012 [4] Marchadour ISMRM 2012 [5] Neeman MRM 1991 [6] Provencher MRM 1993 [7] Kan MRM 2012.