Quantification of High-Resolution 1H[13C] NMR Spectra from Rat Brain Extracts

Robin A de Graaf¹, Golam MI Chowdhury¹, and Kevin L Behar¹ ¹Yale University, MRRC, New Haven, CT, United States

Introduction – ¹H[¹³C] NMR, also known as Proton-Observed, Carbon-Edited (POCE) NMR, is a powerful technique to detect ¹³C label incorporation from ¹³C-labeled substrates into metabolic products with the sensitivity of proton detection [1]. ¹H[¹³C] NMR can be used directly *in vivo*, but is also frequently applied to study ¹³C labeling patterns in brain extracts *in vitro*. Recently, a novel spectral fitting algorithm was described for the spectral quantification of high-resolution ¹H NMR spectra from rat brain extracts *in vitro* [2]. Various aspects of ¹H[¹³C] NMR spectra are different from regular ¹H NMR spectra and pertain to ¹³C isotope shifts, decoupling sidebands and different amplitudes for various multiplets within the same molecule. Here an extension of spectral fitting to the quantification of high-resolution ¹H[¹³C] NMR spectra is described.

Methods – All experiments were performed on a Bruker 11.74 T magnet. Rats were infused with $[1,6^{-13}C_2]$ -glucose for 15, 30 or 60 min after which metabolism was stopped by focused-beam microwave irradiation. Ethanol-based extracts were made from the medial prefrontal cortex. Following lyophilization, extracts were dissolved in 500 uL of a 50 mM phosphate buffer (85 % D₂O) containing 0.5 mM DSS. ¹H[¹³C] NMR spectra were acquired with an adiabatic spin-echo sequence (TR/TE = 15,000/8 ms) in the presence of adiabatic broadband decoupling during acquisition. ¹H[¹³C] difference spectra were calculated as the difference between scans with and without a ¹³C inversion pulse.

Results – All metabolites displayed a measurable ¹³C isotope shift of –2.02 ± 0.26 ppb relative to the ¹²C multiplet. Given the narrow line widths *in vitro* (1.18 ± 0.23 Hz), the ¹³C isotope shifts essentially lead to shifted multiplets that cannot easily be approximated with a single basisset. In the ¹H[¹³C] NMR difference spectrum, the ¹³C isotope shift is not relevant and the spectrum can be fitted as a regular ¹H NMR spectrum (Fig. 1A-C), with the exception that the multiplet amplitudes must be independent (e.g. the amplitude of [4-¹³C]-Glu does not necessarily have to be equal to that of [3-¹³C]-Glu). The fitted ¹H[¹³C] NMR difference spectrum (Figs. 1B/E) can then be subtracted from the ¹H NMR spectrum acquired without ¹³C inversion (i.e. ¹H[¹²C+¹³C] NMR spectrum, Fig. 1D) to give a ¹H[¹²C] NMR spectrum (Fig. 1F). In this spectrum the ¹³C isotope shift is not present, such that it can be fitted as a regular ¹H NMR spectrum (Fig. 1G), but with the exception that the total metabolite amplitudes (e.g. Glu) should be corrected for the amount of ¹³C-label fitted in Fig. 1B (i.e. [4-¹²C]-Glu = Glu – [4-¹³C]-Glu and [3-¹²C]-Glu = Glu – [3-¹³C]-Glu).

Discussion – A spectral fitting algorithm has been described to account for the specific features of ¹H[¹³C] NMR spectra. The most noticeable feature is a significant ^{13}C isotope shift, which is readily dealt with by sequentially fitting ${}^{1}H[{}^{13}C]$ and ¹H[¹²C] NMR sub-spectra in which the ¹³C isotope shift is not relevant. Additional features are the presence of decoupling sidebands and ¹³C natural abundance signals and the need for independent multiplet amplitudes due to varying ¹³C labeling. All of these features can be quantitatively dealt with by the spectral fitting algorithm. While the

focus was on high-resolution ¹H[¹³C] NMR, the algorithm is equally suited for *in vivo* ¹H[¹³C] NMR where the ¹³C isotope shifts represent a much smaller fraction of the spectral line widths.

chemical shift (ppm)

[1] R. A. de Graaf et al, NMR Biomed. 24, 958 (2011) [2] R. A. de Graaf et al, Anal. Chem. 83, 216 (2011)

This research is partially sponsored by NIH grant R01 MH095104.