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TARGET AUDIENCE: Chemical Shift Imaging investigators, Image reconstruction 
scientists.  
PURPOSE: Physiological abnormalities could be detected by irregular change of 
metabolite concentration in specific brain regions. The combination of fully sampled 
spectroscopic imaging data and segmented structural image has been used to estimate 
metabolite value at each voxel [1-4]. This abstract presents an N-compartment-model 
method with polynomial masks to obtain metabolite maps from undersampled 
spectroscopic imaging data. The technique assumes that metabolite value within the 
same tissue type is slowly varying, and the information of tissue boundaries is obtained 
from segmented structural image. Then, a regularized reconstruction with priors is 
formulated to reconstruct the metabolite maps. By acquiring only a subset of k-space 
samples, the acquisition process is sped up, while reconstruction quality is retained via 
prior knowledge of tissue boundaries. 
METHODS: In [1-4], each metabolite map is expressed as a superposition of N 
compartments:	࢞ ൌ 	∑ ௞ܿ௞ே௞ୀଵ࢓  where ࢞ is metabolite map, ࢓௞ is a mask of the ݇௧௛ 
compartment, ܿ௞ is a scaling factor of the ݇௧௛ compartment, N is number of 
compartments in consideration. This model assumes that metabolite value is constant within the same 
compartment. In this work, the existing model is extended to accommodate more than one mask per 
compartment by expressing each metabolite map as ࢞ ൌ	∑ ∑ ௞௟ܿ௞௟௅௣ୀଵே௞ୀଵ࢓  where ࢓௞௟ is the ݈௧௛ mask of 
compartment ݇, ܿ௞௟ is the ݈௧௛ scaling factor of compartment ݇, and L is number of different masks for 
each compartment. Each mask of a compartment is generated corresponding to each term of the 
polynomial. For instance, L = 1 means that the 0th order polynomial mask is used, and L = 3 means that 
the 1th order polynomial mask is used (i.e.,	࢓ଵଵ ൌ ଵଶ࢓,ଵ࢓ ൌ ଵ࢓ ⊗ ࢞௩௔௥௜௔௧௜௢௡,࢓ଵଷ ൌ ଵ࢓ ⊗࢟௩௔௥௜௔௧௜௢௡). The high-resolution ࢓௞௟’s are obtained from the segmented structural image using Freesurfer 
[5] and FSL[6]. The low-resolution mask, ࢓௞௟ሺ௟௢௪ሻ, is then obtained from ࢓௞௟ (Fig.1). By stacking ࢓௞௟ሺ௟௢௪ሻ’s and ܿ௞௟ into a single matrix ࡹሺ௟௢௪ሻ and ࢉ, respectively, the metabolite values are estimated by 

solving:	minࢉ ቚหࡹ࢙࢛ࡲሺ௟௢௪ሻࢉ െ ࢟หቚଶଶ ൅  ௦ is a regularizationߣ ,௨௦ is the undersampled Fourier transform, ࣒ is the sparsifying transformࡲ ,หଵwhere ࢟ is the observed k-space low-resolution data|ࢉࡹ࣒|௦หߣ
parameter. For comparison, the least-square (LS) method is applied to obtain the minimum-norm solution. 
Experiments were conducted on two data sets: numerical phantom and in vivo data. For the first experiment, the reconstructions were evaluated on the 
numerical spectroscopic phantom with water suppressed (~ 10 times higher in amplitude than that of NAA peak) and no lipid. The number of compartments N 
and number of masks per compartment L were chosen to be 9 and 1, respectively. For the second experiment, the water reference and metabolite data were 
fully sampled at 3 Tesla using LASER sequence [7] with TE/TR = 30/1800 ms and a total scan time of 1minute(1-avg water reference)/8minutes(4-avg 
metabolite data) to excite a FOV of 24cmx24cmx8cm at 1 cm3 isotropic. A T1-weighted structural volume at 1 mm3 isotropic resolution was also acquired in 
the same orientation. N and L were chosen to be 3 and 3 respectively. The reconstructions were evaluated at an acceleration factor R equal to 6 on the post 
gridded-data. For both experiments, the Daubechies wavelet of length 2 was used as a sparsifying transform. 
RESULTS: Fig. 2 shows the average and standard deviation of root mean square errors (RMSEs) of the reconstructed NAA map with various acceleration 
factors (R) at SNR = 10 (1st experiment). Fig.3 and Fig.4 depict original data acquired from scanner, reconstructed map from the fully-sampled LS 
reconstruction (R=1), the proposed method, and the LS reconstruction (R = 6), respectively. RMSEs shown in both figures were computed with respected to 
the fully-sampled LS reconstruction. 
DISCUSSION: As shown in Fig.2, RMSEs at all R of the proposed method is smaller than those obtained from the LS method. This observation is also seen 
in the in vivo results (Fig. 3 and 4). This is expected because the proposed method includes priors on the data structure. This prior to impose sparsity in the 
reconstruction is appropriate because the metabolite map has only a few dominating coefficients in the wavelet domain . For the in vivo case, because the 
metabolite value within the same compartment is slowly varying, we used 1st order polynomial for the mask. One limitation of this study is that 
undersampling was performed with post-gridded data on a Cartesian grid. 
CONCLUSION: By obtaining the knowledge of tissue boundaries from segmented 
structural image, the metabolite map can be modeled as a composition of values from N 
compartments. To resemble the real brain, the metabolite value within the same compartment 
is allowed to be slowly varying by using more than one mask per compartment. With this set-
up, there are only a few unknowns to be determined, and the acquisition time could be 
reduced by undersampling the spectroscopic data. In addition, the sparsity constraint is 
enforced on the reconstruction process which leads to more accurate reconstruction of spectra 
compared to that without regularization. 
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Fig. 1: Metabolite map is expressed as a sum of N compartments 
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Fig.4: Metabolite maps with corresponding RMSE 

RMSE with respected to the fully-sampled LS reconstruction  
(R = 1) is shown below each reconstructed map 

Fig.3: Water maps with corresponding RMSE. 
RMSE with respected to the fully-sampled LS reconstruction (R = 1) is shown 
in the upper right hand corner of each reconstructed map 
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Fig. 2: %RMSE comparison of the reconstructed 
NAA map at various R (Phantom, SNR = 10) 
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