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TARGET AUDIENCE: Chemical Shift Imaging investigators, Image reconstruction 
scientists. 
PURPOSE: This abstract presents a two-step, model-based method that leads to an 
accurate reconstruction from undersampled spectroscopic imaging data. This method 
takes advantage of a fast water reference scan to estimate a subset of (non-linear) 
unknowns. Then, a regularized optimization problem with priors is formulated to 
reconstruct the spectroscopic imaging data. This method reduces acquisition time by 
undersampling, while preserving high reconstruction quality. 
METHODS: In [1-4], parametric modeling has been adopted to improve reconstruction 
accuracy of the spectroscopic data. In this work, the time signal at each voxel is 
expressed as a sum of K decaying exponentials [1]: s  ∑ exp /exp ∆ ∆ ) where ’s are amplitudes, ’s are 
decay times,  and  are reference frequency and phase, respectively, ∆  and ∆  
are deviations from the reference frequency and phase, K is number of metabolites in the 
model, and  is white Gaussian noise. ∆  and ∆  are known constants for 1H brain metabolites. In [1,2], the spectrum at each voxel is reconstructed 
independently by solving a least-square (LS) problem. In this work, the data are undersampled in -  space, so all spectra must be simultaneously 
reconstructed. We propose a two-step reconstruction (Fig.1): First, a separate water reference data along with a priori information is used to determine ,  ∆ , , ∆  and . Second, ’s are estimated by solving the following 

optimization problem: min | | , where  is a vector consisting 

of ’s,  contains bases of each metabolite,  is observed k-space data,  is the 
undersampled Fourier transform, .  is total variation operator,  is regularization 
parameter. For comparison, we also applied the LS method that finds a minimum-norm 

solution: min | |  subject to . In this experiment, spectroscopic spiral CSI 
were acquired fully sampled at 1.5T with TE/TR = 144/2000 ms with the total scan time of 
15:20 minutes and resolution of 1.1cc. The water resonance was suppressed using spin-echo 
spectral-spatial pulses. Inversion recovery with TI = 170 ms was used for lipid suppression. 
In post-processing, residual lipids were manually masked out prior to the reconstruction of 
retrospectively undersampled CSI data. K was chosen to be 3, which represented NAA, 
Creatine, and Choline. The reconstructions were evaluated for acceleration factors R 
between 2 and 6 on the post-gridded data. 
RESULTS: Fig. 2 depicts fully sampled data (top), reconstructed metabolite maps from 
undersampling with R = 2 via LS (middle), and the proposed method (bottom). Fig. 3 
compares spectra at specific locations inside the brain. The fully-sampled observed spectra, 
reconstructed spectra from the LS method (R=1), and reconstructed spectra from proposed 
method (R=2) are shown in red, green, and blue, respectively, and difference in magenta. 
Fig. 4 shows root mean square errors (RMSEs) of each reconstructed metabolite map with 
respect to the fully-sampled LS reconstruction with various acceleration factors, R. 
 

DISCUSSION: The proposed method incorporates prior knowledge by imposing a total 
variation term. As a result, RMSEs obtained from the proposed method are smaller than 
those obtained from the LS method even with low R. With higher R, the proposed method 
significantly reduces RMSE (e.g., from approximately 80% to 3.5% at R = 3). There are 
some limitations in this study. First, the reconstruction is done on the post-gridded data. 
Second, lipid was not modeled in our formulation, so undersampling artifacts occurred from 
the presence of lipid affects the reconstruction accuracy. This problem could be solved using outer-volume suppression (OVS) [5], or alternatively, by 
adopting and extending the method proposed in [6], where a fast scan of a high-resolution lipid image aids the modeling and reconstruction. 
CONCLUSION: By representing a time signal at each voxel as a sum of decaying exponentials and taking advantage of a quick water scan, there are only a 
few, linear unknowns left to be determined. This allows us to undersample the spectroscopic data, which mitigates the limitation on long acquisition times in 
CSI. In order to tackle with the undersampling artifacts, prior knowledge on the structure of the data is incorporated to the optimization problem via 
regularization which greatly improves the reconstruction accuracy compared to that without regularization.  
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Fig. 2: Reconstructed metabolite maps with 
corresponding RMSE in the upper right hand corner 
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Fig. 3: Water image and spectra from voxels inside the box 
(Right): Observed spectra at R = 1(red), reconstructed spectra 
using LS at R = 1 (green, ground truth), and proposed method at R 
= 2 (blue), differences between ground truth and the proposed 
method at R = 2 (magenta). 
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Fig. 1: A block diagram for the reconstruction 
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Fig. 4: %RMSE comparison of the reconstructed metabolite map 

%RMSE at various R using proposed 
method 

%RMSE at R=2 using LS and proposed 
method 
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