An extra-mitochondrial domain rich in carbonic anhydrase activity improves myocardial energetics

Marie Allen Schroeder¹, Mohammad Ali¹, Alzbeta Hulikova¹, Claudiu T. Supuran², Kieran Clarke¹, Richard D Vaughan-Jones¹, Damian J Tyler¹, and Pawel Swietach¹ ¹Physiology, Anatomy and Genetics, University of Oxford, Oxford, Oxon, United Kingdom, ²University of Florence, Florence, Italy

Introduction

 CO_2 is produced in vast quantities by cardiac mitochondria and efficient means of its venting are required to support metabolism. A range of metabolic and physiological adaptations for improving energy provision has been identified¹, yet little is known about mechanisms for improving CO_2 venting. Carbonic anhydrases (CAs), expressed at various sites in ventricular cardiomyocytes, may affect mitochondrial CO_2 clearance by catalyzing CO_2 hydration (to H⁺ and HCO₃⁻) and changing trans-membrane [CO_2]-gradients for diffusion. In this study, we investigated the hypothesis that mitochondrial CO_2 venting is facilitated by concentrating CA activity near (but not within) mitochondria, and that this distribution improves myocardial energetics.

Methods and Results

Using fluorescent dyes to measure pH-changes arising from the intracellular hydration of CO_2 introduced from outside cells, overall CA activity in the cytoplasm of isolated ventricular myocytes was found to be modest (2.7-fold above spontaneous kinetics). Experiments on

isolated ventricular mitochondria demonstrated negligible intramitochondrial CA activity. In vivo cardiac CA activity was also investigated by hyperpolarized 13 C magnetic resonance spectroscopy (MRS) from the rate of production of H¹³CO₃⁻ from 13 CO₂, released by mitochondrial metabolism of hyperpolarized $[1-{}^{13}C]$ pyruvate⁴. CA activity measured upon $[1-{}^{13}C]$ pyruvate infusion was 4-fold higher than the cytoplasm-averaged value (11fold above spontaneous kinetics, Fig. A). However, after the ¹³CO₂ resonance was repeatedly quenched with a saturation pulse to allow CO₂ to dissipate away from its mitochondrial source, the apparent CA activity decreased (Fig. B). A fluorescent CA-ligand co-localized with the mitochondrial marker TMRE, indicating that mitochondria are near a CA-rich domain. Based on immunoreactivity, this domain may comprise of CAXIV and, to a lesser extent CAII, which remained closely associated with purified mitochondria. Extra-mitochondrial CA activity raised matrix pH (~0.1 units; flow-cytometry of isolated mitochondria, Fig. D) and improved cardiac energetics indexed by increased phosphocreatine-to-ATP (PCr/ATP) ratio and decreased [ADP] (³¹P MRS of intact hearts, Figs. E&F).

Discussion

These data provide evidence for a functional domain of high CA activity around mitochondria that facilitates CO_2 venting, thus supporting the activity of the heart's mitochondria and improving energetics by means of streamlined waste removal. Aberrant CA activity or distribution may reduce the heart's energetic efficiency, an important finding as reduced PCr/ATP is characteristic of heart failure and correlates with the New York Heart Association classes of heart disease⁵ and predicted prognosis⁶. Certain cardiac disease states involve altered CA expression levels^{7,8}, and the effect that this has on the state of their extra-mitochondrial CA-rich domain and energetics warrants further investigation.

References

- 1. Neubauer S (2007) N Engl J Med 356: 1140-1151.
- 2. Leem, Vaughan-Jones (1998) J Physiol (Pt 2): 471-485.
- 3. Dodgson et al. (1980) PNAS USA 77: 5562-5566.
- 4. Schroeder et al. (2008) PNAS USA 105: 12051-12056.
- 5. Neubauer et al. (1992) Circulation 86: 1810-1818.
- 6. Neubauer et al. (1997) Circulation 96: 2190-2196.
- 7. Vargas, Alvarez (2012) J Mol Cell Cardiol 52: 741-752.
- 8. Dzeja et al. (1999) Mol cell biochem 201: 33-40.

Acknowledgements

This study was supported by the Wellcome Trust, the Royal Society, the British Heart Foundation and GE Healthcare.

A) (*i*) Time course of ¹³C-labelled pyruvate, CO₂ and HCO₃⁻ measured by MRS of rats infused with hyperpolarized [1-¹³C]pyruvate (N=8). (*ii*) Experiment repeated on rats pre-treated with acetazolamide (ATZ, a CA inhibitor), 15 min before infusion of [1-¹³C]pyruvate (N=6). Continuous traces show the best-fit model simulation of the data. **B**) Experimental protocol of A repeated, but with the H¹³CO₃⁻ signal quenched every 20 sec to measure ¹³CO₂ hydration rate as ¹³CO₂ diffused away from the mitochondria. **D**) Relationship between mitochondrial matrix pH and extra-mitochondrial CA activity. Best-fit Hill plot (K_m=0.4 nM CAII). **E**) Cardiac energetics measured in Langendorff-perfused hearts using ³¹P MRS under baseline conditions, during Ca-stress and upon recovery. ATZ reduced PCr/ATP ratio at baseline, and increased (**F**) ADP/ATP ratio.