Comparison of Tumor Perfusion Measured by Hyperpolarized ¹³C Urea with DCE MR Imaging Prior to and Following Radiation Therapy

Vickie Zhang^{1,2}, Robert Bok¹, Jessie Lee², Subramaniam Sukumar¹, Adam Cunha³, I-Chow Hsu³, Jean Pouliot³, Daniel Vigneron^{1,2}, and John Kurhanewicz^{1,2} ¹Department of Radiology and Biomedical Imaging, University of California, San Francisco, San Francisco, California, United States, ²Graduate Program in Bioengineering, University of California, San Francisco & University of California, Berkeley, Berkeley, California, United States, ³Department of Radiation Oncology, University of California, San Francisco, San Francisco, California, United States, ³Department of Radiation Oncology,

Purpose: Dynamic contrast-enhanced magnetic resonance imaging (DCE MRI) has shown great clinical potential for assessing prostate cancer presence and aggressiveness prior to and after radiation therapy (1). Metabolically-inactive hyperpolarized (HP) urea is a nontoxic, endogenous agent that enables MR imaging of perfusion based on a direct signal source that is background-free. Co-polarization of ¹³C pyruvate and urea also allows the simultaneous assessment of tumor perfusion and metabolism in a single MR acquisition (2,3). However, whether hyperpolarized ¹³C urea provides the same information as DCE MRI remains to be answered. To address this question, this study investigated tumor perfusion prior to therapy and following radiation therapy in a transgenic murine model of prostate cancer using both HP ¹³C urea and DCE MRI.

Methods: Four transgenic TRAMP mouse prostate tumors (size = $2.1\pm1.1cc$) were scanned at pretreatment, and 1, 4, and 8 days after radiation therapy. Animals were treated with HDR brachytherapy (Ir-192), which resulted in a dose distribution within the tumor where ventral side of the tumor exposed to a higher dose at 14 Gy, and dorsal side exposed to a lower dose of 4 Gy. Imaging studies were performed on a 14T, 600WB micro-imaging spectrometer (Varian Inc.) [1-¹³C]pyruvic acid and ¹³C urea were co-hyperpolarized and 3D imaging data were acquired as described (4). Immediately after image

Description1 day4 days8 days after treatmentFig. 1: HP ¹³C urea and DCE-AUC from day 0, 1, 4, and 8 days after treatment.acquisition, a series of non-selective 90°

Correlation Coefficient (R) with HP urea	Pre- treatment	Day 1	Day 4	Day 8
DCE-MRI AUC	0.50	0.57	0.51	0.52
DCE-MRI Initial slope	0.51	0.50	0.46	0.42
DCE-MRI Washout slope	0.41	0.39	0.32	0.38

Table 1: correlation coefficients comparing HP 13 C urea with DCE-MRI parameters, at pre-treatment, 1 day 4 days and 8 days after treatment. **P-value < 0.01** for all comparisons.

saturation pulses were applied to destroy residual ¹³C signal within the animal. A 2^{nd} injection of the remaining hyperpolarized mixture was injected into a tube placed inside the coil, and a ¹³C spectrum was acquired to estimate % polarization. Urea data was normalized to the % polarization. Following Gd-DTPA (Magnevist, Bayer HealthCare), dynamic contrast enhancement imaging (DCE) was acquired using a T₁-wt gradient echo sequence (TE/TR=1.11/39ms, 0.312x0.312x1.25mm, acquired over 5 min). Area under curve (AUC), initial

enhancement slope, and washout slope were calculated from DCE images. *Results*: Fig. 1 shows ¹³C urea and DCE AUC images overlaid on a TRAMP tumor prior to and 1, 4, and 8 days after radiation therapy. HP ¹³C urea was acquired at lower in-plane resolution (1.25x1.25x1.25 mm) compare to DCE MRI. Visually, normalized HP ¹³C urea signal intensity spatially correlated with the AUC of the DCE MRI signal intensity at all

time points investigated. Significant correlations were found between HP ¹³C urea and DCE AUC, initial slope, and washout slope at all time points (Table 1). The washout slope had the weakest correlation compared to HP urea (Table 1), and there was an indication that there may be some additional information in the DCE wash-out data that was not captured by the HP ¹³C data. *Discussion & Conclusion*: Significant correlations were found between ¹³C urea and DCE MR data at baseline and following radiation therapy, indicating that hyperpolarized ¹³C urea MRI provides similar information as DCE MRI. This finding is of clinical importance since ¹³C urea has a very good safety profile and could be co-polarized with ¹³C pyruvate to provide a simultaneous measurement of perfusion and metabolism in patients without the nephrotocixity concerns associated with Gd-based contrast agents. However, future studies will need to investigate the acuracy of combined ¹³C pyruvate and ¹³C urea in determining cancer presence and grade relative to DCE MRI prior to and after therapy.

Reference: 1. Hara N, et al. Prostate. 2005; 62(2),140-147. 2. Wilson DM, et. al. J Magn Reson 2010;205:141-147. 3. Von Morze C. Magn Reson Med 2012;30:305-311. 4. Sukumar S, et. al. Proceedings of the 19th Annual Meeting of ISMRM, Montreal, 2011, p3531 *Acknowledgements*: This project was funded by NIH grants RO1EB007588 and P41EB013598.