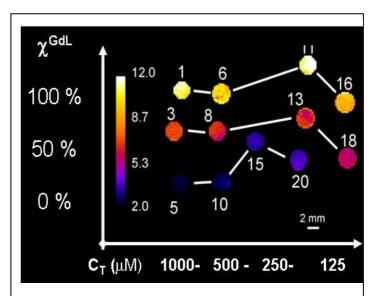

## A R2p/R1p ratiometric approach with Gd containing liposomes for the imaging of Matrix Metalloproteinases by MRI

Giuseppe Digilio<sup>1</sup>, Valeria Catanzaro<sup>2</sup>, Valeria Menchise<sup>3</sup>, Sergio Padovan<sup>3</sup>, Martina Capozza<sup>4</sup>, Linda Chaabane<sup>5</sup>, and Silvio Aime<sup>4</sup>

<sup>1</sup>Università del Piemonte Orientale "A. Avogadro", Alessandria, AL, Italy, <sup>2</sup>Istituto di Ricerca Diagnostica e Nucleare SDN, Via Gianturco 113, Napoli, 80143, Na, Italy, <sup>3</sup>CNR - IBB, Torino, TO, Italy, <sup>4</sup>Department of Chemisty & Center for Molecular Imaging, University of Turin, Torino, TO, Italy, <sup>5</sup>Institute for Experimental Neurology - INSpe, San Raffaele Scientific Institute, Milano, MI, Italy


The approach to molecular imaging of enzymes (including MMPs) by MRI typically relies upon imaging probes composed of an enzyme-cleavable moiety conjugated with a paramagnetic imaging reporter, such as a Gd(III) chelate. Upon enzymatic processing, the probe is transformed into a fragment with an altered relaxivity, leading to a different capability to enhance contrast in MR images with respect to the parent species. However,



**Scheme 1**. The liposome based MRI probe (GdL) and fragments (GdF) derived after cleavage by MMP-2

exact knowledge of the total concentration of Gd ( $C_T$ ) is essential to translate gadolinium contrast enhancement into the molar ratio of unprocessed vs processed forms, hence into in vivo enzyme activity maps. A viable solution to the concentration problem can be provided by the  $R_{2p}/R_{1p}$  ratiometric approach, which is based on the measurement of the ratio between the transverse and longitudinal paramagnetic contributions to the water proton relaxation rate, *i.e.*  $R_{2p}$  and  $R_{1p}$  (with  $R_i$ =1/ $T_i$ , i=1,2). We have developed a new system for the ratiometric assessment of the activity of Matrix Metalloproteinases (MMPs), based on a MMP-2 cleavable

peptide sequence conjugated with a Gd-DOTA chelate at the N-terminus and with an alkyl chain at the Cterminus. This amphiphilic probe has been inserted into the membrane of a stealth liposome, to obtain the paramagnetic probe GdL (Scheme 1). This probe can be cleaved by MMP-2 to release GdF, the free peptide fragment bearing the Gd-chelate. At a magnetic field strength of 7T, the transverse millimolar relaxivities of GdL and GdF are 15.6 and 5.6 mM<sup>-1</sup>s<sup>-1</sup> respectively, while longitudinal relaxivity are very similar (5.9 and 5.6 mM<sup>-1</sup>s<sup>-1</sup>), making the GdL/GdF couple a sensitive ratiometric couple. Parametric  $R_{2p}/R_{1p}$  maps measured in vitro under a MRI setting showed image contrast which was responsive to the GdL-to-GdF ratio, but independent from total gadolinium concentration, and with a detection limit in the 50-120 uM range. The proposed liposome-based MRI reporter is well amenable to combine imaging and therapy in an all-inone system, eventually providing a theranostic approach to MMP-related pathologies, including cancer.



**Figure 1.**  $R_{2p}/R1p$  parametric image of a 1% agar phantom of mixtures of GdL and GdF at four different total Gd concentrantion. Samples with the same  $C_T$  are connected with a line.

**Acknowledgments:** This work is supported by the Regione Piemonte (Italy) (PIIMDMT and Converging Technologies BIO\_THER project), EC-FP6-project MEDITRANS (Targeted Delivery of Nanomedicine) and carried out under the frame of ESF COST Action D38.

[1] a) R. Lebel et al. *Magn. Reson. Med.* **2008**, *60*, 1056–1065; b) E. S. Olson et al. *PNAS* **2010**, *107*, 4311–4316; c) C. V. Gringeri et al. *Contrast Media Mol. Imaging* **2012**, *7*, 175–184.

[2] S. Aime et al. J. Am. Chem. Soc. **2006**, 128, 11326–11327.