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INTRODUCTION 
A new magnetic resonance methodology based on Bloch NMR flow equation and Hermite equations for detailed studies of processes taking place at molecular level in living 
tissues has been developed. 
 
THEORETICAL FORMULATIONS 
We study the flow properties of the modified time independent Bloch NMR flow equations which describes the dynamics of fluid flow under the influence of rF field [1, 2].             
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Subject to the following conditions as highlighted in earlier works [1, 2]. T1 and T2 are the spin-lattice and spin-spin relaxation times respectively, the reciprocals of T1 and T2 are defined as 
relaxation rates. RF B1 is the spatially varying magnetic field and v is the fluid flow velocity. However, when the rf B1(x) field is applied, My has a maximum value when rf B1(x) is 
maximum and Mo = 0. At the point when maximum NMR signal is received (maximum values of My and B1(x) respectively), equation (1) becomes: 

0
)(1

2
0

2

2

=++ y
yy M

v

xS

dx

dM

vTdx

Md                               (2) 

We apply a fundamental transformation procedure given as x
y exxM λψ )()( =  and provided that 
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ANALYSIS OF RESULTS 
From the above expressions, we see that 

0/1 GxTγ  and if we therefore draw a simple analogy from short gradient pulse (SGP) in the pulsed-field gradient (PFG) NMR, we see that 

provided that the relation times T1 and T2 are properly chosen To represent the gradient pulse duration, the term ζ/1  represents the phase change of the spin at the position x.  

 
CONCLUSION 
It would be observed from the illustrations given in Figures (1) and (2) that as the fluid velocity reduces as often encountered in cellular process, we see that the imaging equation 
as given in equation (4) shows contrast in terms of MR signals. Figure (2) shows that the behaviour of the MR signals is completely different for different tissues. Finally, it is 
quite interesting to note that the magnitude of the signals becomes so large at this level and hence, we may be able to follow processes at molecular level in real time in which we 
do not need to worry about blur images. 
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Fig. 4: Plots of the transverse magnetization My (vertical axes) against the absolute 
(positive) values of α (horizontal axes); G = 10mT/m, γ = 42.5781 x 106/T/s, v = 
0.000003m/s using the relaxations time – values, at 1.5T[2], of (a) skeletal muscle 
(b) heart muscle (c)liver (d) kidney (e) spleen (f) fatty tissue (g) gray brain matter 
(h) white brain matter. 
 
 

Fig.1: Plots of the transverse magnetization My 
(vertical axes) against the absolute (positive) 
values of α (horizontal axes) using the relaxations 
time – values of kidney at 1.5T[2], G = 10mT/m, 
γ = 42.5781 x 106/T/s for (a) v = 3.0m/s (b) v = 
0.3m/s (c) v = 0.003m/s (d) v = 0.000003m/s. 
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