
Diffusion-Guided Quantitative Susceptibility Mapping 
Amanda C. L. Ng1,2, David K. Wright3,4, Parnesh Raniga2,5, Stephen Moore6, Gary F. Egan2, and Leigh A. Johnston4,7 

1Dept of Electrical & Electronic Engineering, The University of Melbourne, Melbourne, VIC, Australia, 2Monash Biomedical Imaging, Monash University, Melbourne, 
VIC, Australia, 3Centre for Neuroscience, The University of Melbourne, Melbourne, VIC, Australia, 4Florey Institute of Neuroscience and Mental Health, The 
University of Melbourne, VIC, Australia, 5The Australian e-Health Research Centre-BioMedIA The Australian e-Health Research Centre-BioMedIA, CSIRO 

Preventative Health National Research Flagship ICTC, Herston, QLD, Australia, 6IBM Research Collaboratory for Life Sciences-Melbourne, Victorian Life Sciences 
Computing Initiative, The University of Melbourne, VIC, Australia, 7NeuroEngineering Laboratory, Dept. Electrical & Electronic Engineering, The University of 

Melbourne, Melbourne, VIC, Australia 
 

Target audience Researchers investigating magnetic resonance phase imaging and susceptibility mapping. 
Purpose Quantitative susceptibility mapping (QSM) aims to derive reliable estimates of the magnetic susceptibility of voxels 
from phase data arising from 3D gradient-echo MRI acquisitions. Current approaches model every voxel as a sphere1-3, 
however research has demonstrated that white matter voxels are better modeled as cylinders4. We propose a new approach to 
QSM that uses diffusion-weighted MRI to guide geometric model selection in each voxel.  We demonstrate that the diffusion-
guided QSM method (dQSM) is more accurate and robust than conventional methods. 
Methods  
Theory ΔB is calculated from T2* GRE phase data according to , where γ is the gyromagnetic ratio of water, TE is echo time and ϕ is phase. The susceptibility map, Δχ, is related to ΔB according to 

, where  for spherically modeled voxels and   for cylindrically modeled voxels. The spherical kernel function is given by 
  

(1) 

where r = |r|, θ is the angle between r and B0 field direction, z. The analytical cylindrical kernel function is 2-dimensional, where the plane in which it is defined is normal to the cylinder axis, c. The discrete 3D cylindrical kernel 
function is defined as 

  (2) where φ is the angle between the projection of r and z onto the plane normal to 
c, β is the angle between c and z. The proportionality function 
  

(3) 

facilitates the discretisation of the analytical kernel, where α was determined 
computationally to optimise the discrete approximation of the continuous kernel. 
Fractional anisotropy (FA) and primary eigenvector (V1) maps are calculated from 
DWI data. Voxels with FA(r’) < 0.2 are modelled as spheres, while voxels with FA ≥ 0.2 are modelled as cylinders whose axes are defined by V1. Δχ was solved by 

minimising  where  is the matrix-vector representation of  and L is a second-order derivative.  
Simulation Data The dQSM method was applied to a numerical phantom comprising 4 cylinders and 4 spheres paired with matching Δχ of 1e-7, 2e-7, 3e-7 and 4e-7. 
The cylinder axes were oriented at 90° to the B0 field. The matrix size was 50×125×75 and radii of cylinders and spheres were 5 voxels.  
Experimental Data Ex-vivo mouse brain T2* GRE (3D EPI, TR=1000ms, TE=100ms, FA = 30°) and DWI (TR=2500ms, TE=65ms, shots=2, δ=3ms, Δ=14ms, 46 dirs, b=1700 s/mm2) data were acquired in a single scan session on a 4.7T Bruker with MTX=192×168×96, voxel size=0.1×0.1×0.1mm3. The GRE magnitude and 
DWI B0 images were coregistered using FSL FLIRT. The GRE phase data was unwrapped with ΦUN5 and filtered with SDF6.  
Computation The Δχ maps were calculated on an IBM BlueGene/Q, taking 16 hours to complete the experimental data maps on 4096 cores. The Landweber iteration 
was used to compute the minimisations. A lower threshold of 10-6 was applied to the kernel values. κ was set to 0.75. 
Comparison method MEDI2-derived susceptibility maps were computed for comparison. The λ parameter was set to 0.1 based on qualitative analysis of artefact 
removal and smoothing. 
Results  
The numerical phantom results (Fig. 1) demonstrate accurate computation of the susceptibility values of the cylinders and spheres for the dQSM method. In contrast, 
the MEDI method under-estimated the susceptibility values, and computed different values for cylinder-sphere pairs with equal susceptibility. The ex-vivo mouse 
results (Fig. 2) demonstrate more uniform susceptibility values in the white matter of the corpus callosum (white arrows). Structure visible in the magnitude image 
(square) is not visible in the MEDI map, but does appear in the dQSM map. The MEDI map appears noisier than the ΔB, while the dQSM map appears less noisy than both MEDI and ΔB.  
Discussion  
dQSM has demonstrated enhanced ability to resolve Δχ, particularly in the white matter, where cylindrical geometries dominate.  While the Δχ values derived by MEDI 
are known to scale with the regularisation weighting2, dQSM shows invariance and accuracy of the estimated Δχ values. The main drawback of the proof-of-principle 
dQSM method is the high computational costs. Current QSM methods that apply only a spherical kernel can invoke the convolution theorem, thereby substantially 
reducing computation time to Nlog(N) by employing the Fourier transform. Since dQSM involves spatially dependent kernels, the convolution theorem is no longer 
applicable and computation time is high at N2.  Current work is underway to increase the efficiency of the dQSM approach. 
Conclusions  
We have demonstrated that using diffusion weighted MRI to guide the selection of  cylindrically modelled voxels increases the accuracy of estimated susceptibility 
values.  Our proof-of-concept dQSM method, while computationally expensive, provides a first step beyond the Lorentz sphere model assumption. 
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Figure 1 Derived Δχ for numerical phantom.

Figure 2 (a) Magnitude, (b) ΔB, (c) MEDI-derived Δχ and (d) dQSM-derived Δχ. Main 
magnetic field is directed into the page. Squares indicate structures that appear only in the 

magnitude and dQSM map. Arrows indicate white matter correctly resolved by dQSM.
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