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Introduction: Compared to the single-echo SWI, multi-echo SWI results in improved SNR and enhanced contrast in small veins in 
SWI maps [1, 2]. While the frequency mask for multi-echo SWI can be generated using the same parameters as those used in 
conventional, single-echo SWI [1], independent frequency-mask (FM) generation from each echo results in improved results [3]. In a 
previous study [3], a frequency normalization method was proposed for generating a positive FM where the negative frequency values 
are set to unity and the positive frequency values are normalized by the highest frequency shift. However, because the highest or 
lowest frequency value in LFS maps may be very sensitive to noise or artefact, we developed a modified FM generation method where 
different values of the lowest frequency shift of interest (fth) are calculated for each echo.  

Adaptive Frequency Mask (FM) generation:  The LFS - defined as the local Larmor frequency after subtraction of background field 
contributions - can be used to generate an element-combined, multi-echo SWI image. Because the conventional SWI mask used in 
single-echo SWI cannot be directly applied in the multi-echo case, we define an independent frequency mask for each echo. 
Specifically, the negative frequency mask at the jth echo is defined 
as: 
 
if fχ ≥ 0    FM = 1,  
elseif  fχ < 0 and fχ ≥ fth,j  FM = ( -fth,j + fχ)/(-fth,j), 
else    FM = 0,    (1) 
 
where fχ  is the frequency value of a pixel; fth,j (<0) is the minimum 
frequency shift of interest and is equal to (1/(2×TEj)) in order to 
satisfy a condition 2π | fth, j |×TEj = π . Note that Eq. (1) will be 
same as the frequency normalization method when fth,j is equal to the 
lowest frequency value. 

Methods: Data for phase image post-processing was acquired on a 7 T MR scanner with 16 independent RF transmit and receive 
channels. Imaging was performed using a 2D FLASH sequence (TR = 2 s., TE1 = 4.56 ms, ESP = 4.41 ms, GRAPPA factor = 2, flip 
angle = 50o, 6 echoes, 2 mm slice thickness, 40 slices, 0.5 mm in-plane resolution and 100 KHz readout bandwidth).  
   To generate local frequency maps, the complex images of individual channels at each echo were unwrapped by using the PUROR 
algorithm [4]. The resulting data was high-pass filtered to remove background fields. Specifically, a 2D Gaussian high-pass filter with 
full width at half maximum (FWHM) of 9.4 mm was applied to the Fourier transform of the unwrapped phase data to remove 
background fields [5]. The channel-combined LFS maps were then calculated using a trimming and weighting strategy from all 
channels at individual echoes.  
    Adaptive frequency masks were calculated using Eq. (1), where fth,j was set to -56, -37, -28, -23, -19 Hz for j varying from 2 to 6, 
respectively. Note that the first echo was excluded from the calculation due to its extremely low SWI contrast. When the standard SWI 
FM approach was implemented, fth,j was equal to the lowest frequency value in each frequency image for each echo. The number of 
frequency mask multiplications was four. Echo-combined SW 
images were generated from the mean of SW images from five 
echoes (echoes 2 – 6).  Minimum intensity projections (mIPs) for 
each FM calculation technique were computed across 5 axial slices. 
Data processing was performed off-line using MATLAB.  

Results and Discussion: Figure 1 shows LFS maps from the central 
axial slice at three different echo times.  The contrast in the LFS map 
at the longest echo is highest. When the frequency-normalization 
method was used, the mean ± standard deviation of the lowest 
frequency values from the 40 axial slices was  -114 ± 34, -90 ± 37, -
75 ± 31, -65 ± 27 and -65 ± 28 Hz for the 2nd to 6th echo, 
respectively. The absolute values of fth used by the frequency 
normalization method are 2 to 3 times larger than the values used by 
the proposed adaptive method (values defined in the Method 
section). Additionally, the large standard deviations (~ 30 Hz) in the 
frequency cutoff value obtained from the frequency normalization 
method suggest that FM generation using this method is susceptible to noise or artifact existing in the LFS maps. FMs generated using 
this method may not accurately delineate small venous structures whose frequency shift is only slightly larger than that of structures in 
the brain parenchyma. Figure 2 displays the mIP SW images (mIP over 5 axial slices) generated by using the proposed method (left, 
Fig. 2) as well as the frequency normalization method from [3] (right, Fig. 2). The improved contrast between the veins and the 
surrounding brain parenchyma is apparent in the mIP images generated using the adaptive FM method. 

Conclusion: The adaptive FM mask generation approach from Eq. (1) produces a more robust frequency mask than using the 
standard, single-echo frequency normalization method resulting in increased SWI contrast. 
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Fig. 1 Channel-combined LFS maps (Hz) of the central axial 
slice from three different echoes.  

 
Fig. 2 mIP SW images (mIP over 5 axial slices) using the 
proposed method (left) and the standard frequency 
normalization method (right). 
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