
A Generic, Multi-Node, Multi-GPU Reconstruction Framework for Online, Real-Time, Low-Latency MRI
Haris Saybasili1, Daniel A. Herzka2, Kestutis Barkauskas3, Nicole Seiberlich3, and Mark A. Griswold1

1Radiology, Case Western Reserve University, Cleveland, OH, United States, 2Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD,
United States, 3Biomedical Engineering, Case Western Reserve University, Cleveland, OH, United States

TARGET AUDIENCE: Computer Scientists and Engineers working in MRI; people interested in low-latency image reconstruction involving
complex strategies.
PURPOSE: In MRI research, customizable, flexible external reconstruction frameworks are of great importance. Due to limited flexibility and
freedom of the development environments provided by MRI scanner vendors, many research sites use self-developed external reconstruction
frameworks to test and deploy their new imaging methods and ideas. Various image reconstruction environments have been presented in recent years
[1,2].Even though these environments are flexible, they do not support distributed environment, such as multi-node, or multi-GPU systems in a
transparent manner. Additionally, they may require several high-level software libraries that will negatively affect code portability, which
complicates debugging, development, and maintenance. In this work, we present an automatically distributed, highly flexible external reconstruction
environment developed using only low-level system libraries (thus, lightweight) for improved code portability and decreased code complexity. Our
framework is capable of transparently distributing reconstruction tasks across workstations connected via network (nodes). In addition to remote
distribution, each node (workstation) detects available GPUs, and locally distributes its reconstruction task for improved performance.
METHODS: Software Implementation: Image reconstruction was modeled as a pipeline, or series of services, where each service forwards its
output to the next service in chain. A generic pipeline manager object was provided to automatically configure and manage reconstruction pipelines.
An extra execution thread (optional) was transparently provided to each service by the framework to enable asynchronous computations that may be
required during dynamic imaging (e.g. TGRAPPA calibration). Each service had the capacity to perform coil selective (subset of all the coils)
reconstructions to enable distributed execution (both locally on multiple GPUs and remotely on multiple nodes). Local and remote task distribution
was totally transparent to the user. One node was assigned as the master node to distribute the tasks to the reconstruction nodes. The list of
reconstruction nodes was provided as a command line parameter to the runtime system on the master node for remote task distribution. The pipeline
manager on each node automatically detected the number of local GPUs, and the reconstruction tasks were automatically distributed to each GPU to
be executed on a separate thread. Each GPU executed the same pipeline, on different portions of the raw MRI data. Final image was calculated on the
master node from all partial results. Figure 1 depicts the distributed reconstruction process on N nodes with M GPUs, for a reconstruction pipeline of
K services. Tools: C++ was used as the programming language. CUDA 4.0 (http:// http://developer.nvidia.com/cuda-toolkit-40) was used for GPU
programming. POSIX threads were used for multi-threading. A real-time product sequence was modified to configure the reconstruction pipeline
from the sequence user interface. An additional module was implemented on the scanner to communicate with our reconstruction environment.
TCP/IP protocol was used for network programming. Hardware: Each reconstruction node had an Intel Xeon X5660 CPU (6 cores, 12 threads), 48
GB of RAM and two NVIDIA Fermi M2090 GPUs. Inter-node communications were accomplished via 10 Gbit/s ethernet connections.
Communication with the scanner was performed using a 1 Gbit/s ethernet connection. Test: Our framework was tested on a 5-node configuration
each with two GPUs: one of the nodes was reserved as the master node, and the remaining four nodes were assigned as reconstruction nodes. To
evaluate our distributed MRI reconstruction framework, the following modules were implemented on the GPU as services: through-time radial
GRAPPA (as described in (3)), convolution gridder, FFT operations, RSS combination/image cropping. Undersampled radial datasets acquired with
32 coils were reconstructed in real-time using our distributed MRI reconstruction framework. Four nodes were during (eight GPUs in total). MRI:
MRI was performed on a 1.5T Espree scanner (Siemens Healthcare, Erlangen, Germany). Acquisition parameters were: radial acquisition matrix:
144x256 (calibration), 16x256 (accelerated), acceleration rate (R): 8, image matrix: 128x128, TR: 2.64ms, FOV: 300x300 mm2, BW: 1115Hz/px,
number of coils: 32, temporal resolution: 42 ms/frame. Imaging was performed with prior written informed consent and local IRB approval.

Figure 1. Distributed reconstruction process.
Master node forwards raw data to the
reconstruction nodes. Each node then locally
distributes its task to GPUs. Each GPU executes
the same pipeline, but on different portions of the
raw data. Partial results from each node
combined by the master node and sent to scanner.

Figure 2. Short axis, free-breathing non-gated,
128x128 cardiac images from a healthy volunteer
reconstructed from a 32-coil 16x256 radial data set
using radial GRAPPA in real-time. Acquisition
time: 42 ms, reconstruction time with 4 nodes (2
GPUs on each node): 11.2 ms.

 1 node 2 nodes 4 nodes
1 GPU 31.5 19 13.2
2 GPUs 19.5 13.4 11.2

Table 1. Through-time Radial GRAPPA reconstruction
performances in ms, including network transfers
between nodes (0.2-0.5 ms), from 32 coil, 16x256
radial data for various configurations.
RESULTS: Multi-node reconstruction
performances on 32 coil 16x256 undersampled
radial datasets are represented in Table 1 for
various configurations. Short-axis, free-
breathing, non-gated, systolic and diastolic
cardiac images (R=8, 16 projections) are
presented in Figure 2.

DISCUSSION: We present a generic, flexible, lightweight, distributed (multi-node, multi-GPU), low-latency reconstruction framework that is
capable of providing faster-than-acquisition reconstruction performance. A 32 coil undersampled radial dataset (16x256 acquisition matrix, temporal
resolution=42 ms) was reconstructed using radial GRAPPA in 11.2 ms when using 4 reconstruction nodes. Since the task distribution (both local and
remote) is completely transparent to the user, our framework is scalable and can easily adapt to challenging reconstruction scenarios (e.g. higher
acceleration rates, larger number of acquisition coils) by deploying more nodes/GPUs. Additionally, dynamic imaging methods could be readily
supported, since asynchronous execution threads were transparently assigned to each service. As an added benefit, distributing the reconstruction task
substantially reduced the memory requirements for each node/GPU. We believe that our framework is beneficial for reducing computational load and
memory requirements for reconstruction on modern MRI scanners that support very large number of acquisition coils.
REFERENCES: [1] Santos JM et al. In Proc IEEE EMBS 2004.2:1048-51. [2] Hansen MS et al. MRM 2012 Epub. [3] Saybasili et al. Proc ISMRM 2012. p 2554.
FUNDING: This project was funded by NIH/NIBIB R00EB011527, and NIH 1RO1HL094557.

3838.Proc. Intl. Soc. Mag. Reson. Med. 21 (2013)

