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Introduction: Compressed Sensing (CS) has been applied in 
dynamic Magnetic Resonance Imaging (dMRI) (1) to accelerate the 
data acquisition by exploring the sparsity of the signals. 
Conventionally, the 3D/4D datasets were separated into series of 2D 
images. The spatial and temporal information were then sparsified 
independently and sequentially. Therefore the spatial-temporal 
correlation may not be sufficiently exploited in the conventional 
approaches. In this work, we introduce the concept of tensor sparsity 
for CS-dMRI. Inspired by a recent application of 2D-SVD in CS-
MRI (2), the Tucker model based Higher-order Singular Value 
Decomposition (HOSVD) (3) is applied in the CS-dMRI framework. 
Instead of treating the 3D/4D data as series of 2D images, HOSVD 
inherits the high-dimensional data format, leading to significantly 
improved dMRI reconstructions compared with those well-
established CS-dMRI methods. 
Theory: CS-dMRI framework can be summarized as:
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denote the sparsity basis and the partial Fourier transform 
respectively; y is the k-space measurements; 

 

ε  is the error tolerance; 

and M is the 3D/4D images. Conventionally, Ψ consists of a 2D 
transform (e.g. 2D wavelet transform) for in-plane sparsity and an 
extra transform (e.g. 1D Fourier transform) for temporal sparsity. 
This combination of subsequent vector and matrix operations can be 
ineffective in finding the sparse representation of the multi-
dimensional datasets. In fact, there exists multi-dimensional sparsifying transforms, such 
as the Higher-order Singular Value Decomposition (HOSVD), that maintains the 
original data format and reduces the data redundancy by exploiting the information 
correlations in all dimensions. Briefly, any set of complex 3D images M can be 

decomposed as:
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× denotes the n-mode product of a 

tensor by a matrix. As demonstrated in (3), , 1, 2, 3,
n

U n = in equation [2] is the left 

singular matrix of the correlated n-mode matrix unfolding of tensor M. Therefore, the 
computation of HOSVD in equation [2] leads to three different 2D-SVD operations: 
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n n nnS U M V n == [3], where M(n) denotes the n-mode matrix unfolding of tensor M. 

The core tensor S can then be computed as
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unitary matrices , 1, 2, 3,
n

U n = obtained, we can then construct the tensor sparsifying 

transform as: 
1 1 2 2 3 3

( )
H H H
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of the 3D dataset M in HOSVD basis. It is clearly shown that the coefficients with large 
values are highly concentrated in one corner, while the vast majority of the elements in 
the S tensor are close to zero. 
Methods: 25 frames of full cardiac cine k-space sourced from (4) was acquired using a 
1.5T Philips system with an in-plane resolution of 256 × 256. The data was obtained 
using a steady-state free precession (SSFP) sequence with a flip angle of 50 degree and 
TR = 3.45 msec. The FOV was 345 mm × 270 mm. The slice thickness was 10 mm. 
Each frame was randomly under-sampled in a retrospective fashion. The proposed 
method, k-t FOCUSS (4) and k-t SPARSE (5) were used for image recovery. k-t 
SPARSE employs 2D wavelet transform for in-plane sparsifying followed by the 1D 
Fourier transform along the temporal dimension. k-t FOCUSS uses 1D Fourier 
transform only for temporal sparsity. The results of all three methods were compared.  
Results and Discussion: Fig.2(a) quantifies the image quality of the proposed method 
compared to k-t FOCUSS and k-t SPARSE, in terms of frame by frame normalized 
MSE (NMSE) when the reduction factor was 8. For all the frames, the proposed method 
consistently provided lower NMSE than the conventional methods. Fig.2(b, left) and 
Fig.2(b, right) show the reconstructed frames and their error maps (enlarged 4 times), 
where the proposed method achieved the highest and lowest NMSE, respectively. Consistent with the quantified evaluation, HOSVD achieved better image 
contrast, highest resolution and lowest artefacts. In Figs. (1) and (2), HOSVD demonstrated its ability to simultaneously explore spatial-temporal sparsity and, 
therefore provide better reconstruction accuracy than the conventional methods. 
Conclusion: This work proposed a novel concept of tensor sparsity for Compressed Sensing dynamic MRI, and presented the Higher-order Singular Value 
Decomposition as an example. The proposed HOSVD transform simultaneously sparsifies both temporal and spatial information, offering advantages of the tensor 
sparsity in terms of reconstruction accuracy, which have been demonstrated in a cardiac dynamic MRI study. 
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Abstract: In this work, we introduce the conception of tensor sparsity for Compressed Sensing dynamic MRI. Conventionally, the spatial and temporal information 
were then sparsified independently and sequentially. Therefore the spatial-temporal correlation may not be sufficiently exploited. This work applys the Tucker 
model based Higher-order Singular Value Decomposition (HOSVD) in the Compressed Sensing dynamic MRI framework. Instead of treating the 3D/4D data as 
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