
Fig. 2: Comparison of zoomed-in regions from T2-weighted images (a-d) and 
estimated T2 parameter maps (e-h), for (from left to right): gold-standard, noisy 
data, results from the method in [1] and the proposed method.  

Fig. 1: Correlation matrix for the edges 
from a T2-weighted image sequence. 
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Introduction:  
Denoising is widely used for various quantitative MR imaging applications (e.g., quantitative diffusion imaging [1], parametric mapping [2] and 
spectroscopic imaging [3]), where a sequence of images is acquired and used for parameter estimation. Although it is straightforward to perform 
spatial filtering of individual images [4-6], and/or temporal filtering of each voxel [7-9], it has been demonstrated that jointly denoising multiple 
images can improve performance, especially in low SNR regions [1, 10-11]. A typical approach to joint denoising (e.g., [1]) is to enforce the entire 
image sequence to have shared edge structures. However, the edges estimated from noisy data using this approach can be biased when there are 
images with distinct edges in the sequence. For example, Fig. 1 illustrates the correlation between the edges of a T2-weighted image sequence. As 
can be seen, the edges from neighboring frames are highly correlated but this correlation is gradually reduced for the more distant frames. We 
propose here a new denoising method, based on two modeling assumptions: (1) the edge structures in the image sequence are correlated and admit a 
low-rank representation; (2) the edge images are sparse/highly compressible. We use a penalized maximum likelihood (PML) estimation formalism 
to integrate these components and develop a computationally efficient algorithm to solve the associated optimization problem. The proposed method 
has been evaluated using simulated and experimental data and provided excellent denoising results for all the cases tested. 

Proposed Method:  
We consider the denoising model: Y = X + N, where Y and X are NxQ matrices whose columns 
correspond to the noisy and noiseless images, respectively. Assuming complex white Gaussian noise for 
N, we propose to denoise Y using the following formulation 
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D is an operator that computes finite differences of each image along all D dimensions. P∈ CDNxL and 
Q ∈ CLxQ are low-rank decomposition [12-15] of the edge images. ( )Φ PQ is a sparsity-promoting 

function. Here, we use ( ) 1
Φ =PQ PQ . The penalty parameters α and λ are used to trade off the data 

consistency, the low-rank penalty and the sparsity constraint. We design an alternating minimization 

algorithm to solve the problem in (1). Specifically, for fixed X̂ , we update P and Q by solving 
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Equivalently, we introduce an auxiliary variable S = PQ and 
use the augmented Lagrangian method (ALM) [16-17] to solve  
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For a fixed P̂ and Q̂ , we update X by solving 
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We iterate (2) and (3) are alternatively until convergence. X is 
initialized using the noisy images and P and Q are initialized 
by applying SVD to the noisy finite difference images. Note 
also that the low-rank model of X = UV can readily be 
incorporated into the current formulation to further improve 
[11-15] its denoising performance. 
Results: We evaluated the proposed method using multiple sets 
of quantitative imaging data. One of them was a multi-echo 
image series acquired using a spin-echo sequence on a 3T 
Siemens Trio scanner with 12-channel head coil (32 echoes, 
256x208 matrix size and 220x220mm2 FOV). The original 
sum-of-squares images had very high SNR and were treated as 
the gold-standard. White Gaussian noise was added to simulate 

the noisy data. The proposed method was applied to denoise the images with 4,  2.0, 0.005L α λ= = = and five iterations between the subproblems 
in (2) and (3). The number of ALM iterations is 20. Fig. 2 compares the denoising results. The proposed method provides excellent noise reduction 
with better edge preservation, both in the contrast-weighted images and the parameter maps. The root mean square errors (RMSEs) for T2 estimation 
are also shown in the upper right corners of the T2 maps. Significant error reduction can be seen. 
Conclusion: We have presented a new method to denoise image sequences for quantitative MR imaging. An efficient algorithm was described to 
solve the resulting optimization problem. Significant noise reduction with edge preservation has been demonstrated. The proposed regularization 
formalism can also be extended to joint reconstruction of image series by including proper linear operators that model the data acquisition process. 
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