
Figure 1: Phantom RMSE for S-
SPIRiT and NLCG with additional 
noise. NLCG achieves optimal RMSE 
in 50 seconds, while S-SPIRiT 
surpasses NLCG in 25 seconds. 

Figure 2: In vivo NLCG (left 
column) and S-SPIRiT (right 
column) images. S-SPIRiT shows 
visibly reduced noise levels in 
both the lung region (top row) 
and within the myocardium and 
blood pool (bottom row). 
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Purpose: The high spatial and temporal requirements of real-time cardiac MR imaging under free-breathing conditions can be challenging to meet 
with current GRAPPA and SENSE reconstruction techniques. SPIRiT1 improves upon GRAPPA by taking advantage of additional self-consistency 
constraints between acquired and unacquired data. Yet typical iterative solutions for SPIRiT with nonlinear regularization are susceptible to local 
minima issues due to ill-conditioning of the underlying optimization problem. The nonlinear conjugate gradient (NLCG) solver can be 
computationally intensive for SPIRiT with ℓ  regularization and is difficult to tune to specific scenarios. We 
propose shrinkage SPIRiT (S-SPIRiT), a FISTA-based2 implementation of ℓ -regularized SPIRiT that 
provides improved robustness to suboptimal parameter tuning and reduced computational requirements 
compared to NLCG techniques. 
 
Methods: Given the cost function for unregularized SPIRiT,  , the ℓ -
regularized formulation is then  , with , , and  denoting respectively the k-
space sampling operator, the SPIRiT self-consistency operator and a sparse transform operator,  and  
denoting respectively the reconstructed and acquired data, and  and  denoting tuning parameters. FISTA2 
minimizes  by first computing a gradient step   and then performing a shrinkage operation 

within the sparsifying domain:   . Fast 1/  convergence is achieved by using 
a particular linear combination of the previous two iterations as the input to the next iteration. In S-SPIRiT, 
we apply FISTA to the standard SPIRiT cost function to achieve ℓ  regularization within the wavelet domain. 
The low cost of the gradient calculation for FISTA significantly reduces computational time compared to the 
multiple line searches required for the NLCG approach. In S-SPIRiT, we also use a dynamically updated 
wavelet thresholding parameter based on the ratio of the noise variance to subband signal as estimated from the 
wavelet coefficients3, eliminating the need to tune an additional parameter and providing robustness in the 
presence of suboptimal parameter tuning and high noise levels. 
 
S-SPIRiT was tested in both phantom and in vivo studies. In the phantom study, 80 frames of an axial slice of a 
static spherical water bottle phantom were acquired (Siemens, Avanto 1.5T, 12 channels) with no parallel 
acceleration. Data were retrospectively randomly downsampled in both spatial directions to rate 6. A 7x7 SPIRiT 
kernel was estimated using the temporal average of all frames. Both S-SPIRiT and NLCG reconstructions were 
performed in two scenarios: (1) without additional noise and (2) with additional complex Gaussian noise. For 
optimal performance, NLCG reconstruction utilized both wavelet domain and total variation (TV) regularization. 
Per iteration RMS error between results and the full k-space data was measured. Tuning parameters were 
optimized for the noiseless scenario and remained unchanged in the noisy scenarios. For the in vivo study, free-
breathing cardiac cine data (uniformly downsampled, temporally-interleaved Cartesian trajectory, 32 channels) 
were acquired at rest (rate 6, 256 frames, 4-chamber view) and after treadmill exercise stress (rate 5, 50 frames, 
short axis view) at 1.5T (Siemens, Avanto) from one healthy volunteer. Data were first reconstructed using 
GRAPPA with a 4x5 kernel estimated from the temporal average of all frames. GRAPPA results were used to 
initialize both S-SPIRiT and NLCG reconstructions. A 7x7 SPIRiT kernel estimated using the temporal average 
of the initially acquired data was used. The minimum of the cost function was used as a stopping criterion for 
both reconstructions. For optimal performance, NLCG reconstruction used both wavelet and TV regularization 
terms. Average SNR based on random matrix theory was measured for both reconstruction methods. All 
reconstructions were performed using Matlab 2012a on an Intel Core i5 workstation with 16Gb memory. 
 
Results: Figure 1 shows RMS error relative to the full k-space phantom data for both S-SPIRiT and NLCG the 
noisy scenario. The use of dynamic wavelet thresholding provides an additional degree of robustness, allowing 
S-SPIRiT to achieve reduced RMSE compared to NLCG in a shorter amount of time. Figure 2 shows a comparison between in vivo NLCG and S-
SPIRiT results at rest during systole, where cardiac motion is most pronounced. At rest, S-SPIRiT produced a 14.80% SNR improvement over 
NLCG. Post exercise stress, S-SPIRiT produced a 33.44% SNR improvement over NLCG. For the phantom study, each NLCG iteration took 5 
seconds, whereas each S-SPIRiT iteration took on average 0.9 seconds. In the in vivo study, NLCG required on average 16 seconds per iteration and 
typically converged within 10 iterations for a per frame reconstruction time of about 160s. S-SPIRiT required 3.5 seconds per iteration and converged 
within 25 iterations, or about half the reconstruction time of NLCG. 
 
Conclusion: Compared to NLCG techniques, S-SPIRiT can provide an efficient implementation of ℓ -regularized SPIRiT with additional robustness 
towards suboptimal parameter tuning and high noise levels. S-SPIRiT may be a practical way to achieve improved image quality beyond GRAPPA in 
the context of free-breathing real-time cardiac MR imaging.  
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