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Introduction: Parallel imaging accelerates the acquisition by reducing the number of acquired frequencies. Cardiac Magnetic Resonance Imaging (CMRI) is a time-
resolved imaging technology for non-invasive assessment of the function and structure of the cardiovascular system. In a SENSE-type reconstruction approach [1], the 
weighted 3D redundant Haar wavelets approach proposed in [2] has been proven effective in regularizing the target images to yield the desired spatial and temporal 
smoothness. However, strong spatial and temporal smoothness may eliminate the fine details of the heart such as valve leaflets. In this work, a new approach was 
proposed for dynamic cardiac MRI reconstruction by setting motion-dependent weights in the L1 regularization. Experiments conducted on CMRI data demonstrate the 
effectiveness of the proposed approach in preserving fine details of the heart. 

Methods: Reconstruction Formulation: Let x be a 3D (2D+t) tensor, where the first two dimensions correspond to the spatial directions and the third dimension denotes 
the temporal direction, and let xt be the 2D image at time point t. Let sc be the CSM for coil c, ⊙ the component-wise product between two matrices,  ⊙  the coil 
image of coil c at temporal phase t. Let Φ  represent the acquisition operator at time t, and  the acquired k-space by coil c at time t. Let W3D be the 3D redundant Haar 
wavelets, and λ3D the tensor of weights applied on the wavelet coefficients of x. The optimization for the reconstruction can be written as: 

                                                                                 min  ∑ ∑ || − Φ ( ⊙ )|| + | ⊙ ( ) | .                              (1)  

Extract Motion Region: In the above optimization formulation, the tensor of weights λ3D is assigned so that the high temporal frequencies were given a higher weight 
compared to the low temporal frequencies [2]. Higher temporal weights enforce stronger temporal correlation, which helps to overcome the aliasing caused by 
undersampling the data, but may also introduce blur in the motion. To deal with this problem, in addition to weighting the higher and lower temporal frequencies 
differently, we assign the relatively static spatial region with higher weights and the motion region with lower weights. The method we use to detect the motion region 
is as follows. Firstly, we do a regular reconstruction using Eq. (1). Secondly, we calculate for each pixel the standard deviation across time. Thirdly, we mark the pixels 
with temporal standard deviation above some threshold, and take these pixels as the motion region. Let  be the reconstruction result from Eq. (1) at time point t,  be 
a 2D matrix of the same size as the 2D image and with entries 1 or 0 for each pixel to indicate whether the pixel is within the motion region or not, and > 0 be a 
threshold. The formula for computing the motion region is: 

                                                                                , = ∑ ( , − ∑ , )) ,                                                                 (2) 

where  is an indicator function for inputs greater than threshold . With , we construct a 3D tensor, denoted as , which has the same size as λ3D. 

Motion-Dependent L1 minimization: After incorporating the idea in the previous step, the new weight  used to replace the original inside the weighted L1 
penalization becomes: 

                                                                                = ⊙ + ⊙ ( − ),                                                        (3) 
where is a 3D 
tensor with all 
entries equal to 1, 
and > > 0. 
The optimization 
problem (1) was 
solved using the 
approach specified 
in [2]. In addition, 
the Eigen-vector 
approach for CSM 
estimation [3, 4] 
was used to 
estimate the CSM 

.  
Data: The data 
was acquired in a 
healthy volunteer 
on a 1.5T clinical 

MR scanner (MAGNETOM Aera, Siemens Healthcare, Erlangen, Germany). Imaging parameters included repetition time/echo time 48ms/1.6ms, field of view 
192×144 mm2, temporal resolution 42ms, flip angle 72°, band width per pixel 1085HZ, 19 temporal phases. For each temporal phase, 16 lines were acquired with 30 
coil channels.   
Results: The proposed motion-dependent 3D wavelet approach was compared to the weighted 3D redundant Haar wavelets approach proposed in [2]. The 
reconstruction results for Trigger Time (TT) 336 by both approaches are presented in Fig. 1 a) & b), respectively. The reconstruction results for TT 672 by both 
approaches are presented in Fig. 1 c) & d), respectively. Fig. 1 l) is the motion region of the images. By comparing Fig. 1 a) versus 1 c) and Fig. 1 b) versus 1 d), it can 
be observed that the motion-dependent 3D wavelet approach preserves more fine details inside the motion region of the heart. Fig. 1 e) and f) are the zoom-in versions 
of the boxed regions of Fig. 1 a) and  c), respectively, to better compare the fine details. The x-t plots corresponding to the two vertical lines in Fig. 1 g) further verify 
the effectiveness of proposed approach, as the motion of the valve leaflet (marked by red circles) are less blurry. In summary, the proposed approach is effective in 
preserving fine details of the motion while keeping the same overall noise level within the entire FOV. 

Discussion and Conclusion: We proposed a new approach for dynamic cardiac MRI reconstruction by setting motion-dependent weights in the L1 regularization. The 
new approach prevents over-smoothing in both the spatial and temporal dimensions, thus preserving fine details of the heart which might be missing in the weighted 3D 
wavelet approach. Experiments on cardiac MRI data show higher spatial and temporal resolution within the selected motion region of the heart. 

Disclaimer: The concepts and information presented in this paper are based on research and are not commercially available. 
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Figure 1: Reconstruction results. (a) The reconstruction result for Trigger Time 
(TT) 336 by the approach in [2]. (b) The reconstruction result for TT 336 by the 
proposed motion-dependent 3D wavelet approach. (c, d) Same reconstruction results 
as (a) and (b) respectively, but for TT 672. (e, f) Zoom-in version of the red-box- 
marked regions of (a) and (b) respectively. (g) The x-t plot locations marked by the 
two vertical lines. (h, i) The x-t plots located at the first vertical line in (g) from the 
motion-dependent 3D wavelet approach and the weighted 3D wavelet approach. (j, 
k) Same x-t plots as (h) and (i), respectively, but located at the second vertical line in 
(g). (l) The motion region of the moving heart. 
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