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Background: 

The use of sparse models for the reconstruction of undersampled data has been proposed as a very powerful solution for shortening 
acquisition times of magnetic resonance (MR) scans [1-4]. Their benefits are of particular interest in dynamic imaging such as cardiac 
cine, where the traditional Nyquist criterion imposes challenging spatiotemporal sampling rates. Sparse recovery methods have already 
been developed for this imaging modality but the vast majority only consider fixed-basis transforms to provide a sparsity domain for 
MR sequences, which are suboptimal. In [5], this problem is overcome with the use of dictionary learning (DL) techniques that adapt 
the transform basis to the data. This advantage was confirmed in [6] on cardiac cine data but only the reconstruction of data back 
transformed from magnitude images was addressed. This neglects the full complex nature of MR signals and can make the proposed 
solutions impractical. We propose an algorithm related to that in [5], but able to reconstruct magnitude and phase sequences, and show 
that its performance surpasses that of a widely cited fixed-basis sparsity transform method. 
Methods: 

Sparsity models for cardiac data have mainly been limited to the x-f support [2,3], wavelets [3] 
and total variation (TV) [4]. While these fixed-basis domains can supply sparse representations for 
many examples, they do not achieve the sparsest representation possible for any given example. DL 
techniques can adapt a basis set to a particular training dataset such that it can be represented more 
sparsely than the aforementioned transforms. Furthermore, enforcing TV sparsity in sequences 
disregards the differences in sparsity levels across space and time, even though it can be easily 
checked empirically that temporal gradients (TGs) are very often sparser than spatial gradients.  

Assuming xû = Fuxd + n ∈Cm to be the undersampled k-space acquisition, with Fu an 
undersampled Fourier transform and n white Gaussian noise, we propose a reconstruction that seeks 

a sequence x ∈CP, P≫m, that (1) has real and imaginary parts that can be sparsely represented by a 
patch-based learned dictionary, (2) has a magnitude part with sparse temporal gradients, and (3) Fux 
is close to the acquisitions xû in the least square sense. We refer to the algorithm supplying this 
reconstruction as the dictionary learning temporal gradient (DLTG) algorithm. The optimisation task 
is broken down into three subproblems that iteratively find solutions to constraints 1, 2 and 3, 
and is initialised with a zero-filled version of xû. The single dictionary used to code real and 
imaginary parts of x is trained with 3D spatiotemporal patches extracted from the magnitude 
sequence using the K-SVD algorithm [7]. We benchmarked performance of this algorithm by 
comparing it to k-t FOCUSS [2], which enforces sparsity in the x-f domain. Performance of k-
t FOCUSS was optimised using the ground truth result to compare to the best reconstructions 
possible, even though this cannot be done in practice.  

 Fully sampled single scans of dimensions 256×256 with 30 time frames were obtained 
using a cardiac coil on a 1.5T Philips Achieva system on 5 subjects. The data was artificially 
undersampled and reconstructed. Different 2D cartesian undersampling masks were applied to 
every temporal frame using the method in [2]. All experiments used 10000 training patches to 
train dictionaries of 600 atoms of size 4×4×4. 
Results: 

Figure 1 shows a fully sampled magnitude image during systole from one subject and 
reconstructions using both methods at an acceleration rate of 10.23. Difference images (c,d) 
confirm the learned basis sparsity model produces lower error, with the high dynamism around 
the heart during systole better captured. Figure 2 shows the peak signal-to-noise ratio 
performance of the complex reconstructions at various undersampling ratios taking the fully 
sampled scan as the ground truth (mean values +/- 1 SD for the 5 subjects). DLTG achieves an 
improvement of about 2.5 dBs over k-t FOCUSS across all accelerations tested. Further 
experiments revealed that the enforcement of TG sparsity only improves reconstruction quality 
considerably at very low sampling factors, but accelerates convergence speed greatly in all cases considered. 
Conclusion: 

Sparse representations can accelerate dynamic MR acquisition, but choice of sparsity model has a considerable impact on 
performance. While optimal sparsity transforms are still an open question, we have shown that a patch-based approach to adapt a 
model can outperform previous methods. Furthermore, employing global auxiliary sparsity constraints that are suitable like TG 
sparsity can improve reconstruction quality as well as accelerate the convergence of the patch-based reconstruction. Most importantly, 
the algorithm presented allows the reconstruction of complex data, which is an essential feature for any MR reconstruction. 
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