
Figure 1 Generating mean (fully sampled) k-space data. In this example, the k-
space is sampled every 4 lines. Acquired data are in solid lines, and missing data 
are in dashed lines. 

Figure 2 Learnt filters (top left 2×2, top 
right 4×4, bottom 8×8). 

Figure 3 PSNR of the cardiac MR reconstruction compared to the 
ground truth.  

Figure 4 Cardiac Images: (a) ground truth at time phase 1; 
(b) reconstruction from 8x8 size redundant Haar wavelet 
transform of under-sampled data at time phase 1; (c) 
reconstruction from 8x8 size learnt transform of under-
sampled data at time phase 1; (d) difference image of (a) and 
(b); (e) difference image of (a) and (c). 
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Introduction: Dynamic cardiovascular MRI facilitates the assessment of the structure and function of the cardiovascular system. One of the challenges in dynamic MRI 
is the prolonged data acquisition time. In order to fit the data acquisition time inside the motion cycles of the imaging subject, the data must be highly undersampled. 
Compressed sensing or sparsity-based MR reconstruction [1] takes advantage of the fact that the image is compressible in some transform domain, and enables 
reconstruction based on under-sampled k-space data thereby reducing the acquisition time. The design of such transform is a key to the success of the reconstruction. In 
this paper, we propose to use tight frame learning for computing data-driven transforms. Empirical results demonstrate improvement over the transform associated with 
the redundant Haar Wavelets. 
Methods: Our proposed approach comprises of the following steps: 1) Acquire training images using similar acquisition 
protocols for dynamic cardiac imaging or generate a reference image from the acquired data itself.  2) Learn a tight frame 
from the reference or training images. 3) Perform the sparsity enforcing reconstruction using the learnt tight frame in an 
analysis formulation. In the remainder of this abstract we shall focus on generating a reference image from the acquired 
data itself. 

Reference Generation: To acquire the 
cardiac images, the k-space data are under-
sampled in an interleaved way, as shown in 
Figure 1, where each plot illustrates the 
sampled k-space for a given time point 
(acquired data in solid lines, and missing 
data in dashed lines). We propose to take 
the average in the temporal direction to 
generate the mean (fully sampled) k-space, 
as shown in rightmost plot of Figure 1(a). 

We generate the reference image by going from k-space to the image space. 
Tight Frame Learning: With the reference image, we can construct an adaptive discrete tight frame to form the appropriate 
transform W using the algorithm described in [2]. The basic idea of the algorithm is as follows. Let ݔ௥௘௙ ∈ ܴேೣே೤ be the 1D 
vector from concatenating all columns of ݃௥௘௙(the reference image) vertically together. The construction of the tight frame 
operator W is achieved by solving the following minimization. 
            min௨,{௙೔}೔సభೞ ݑ‖ −ܹሺ ଵ݂, ଶ݂, … , ௦݂ሻݔ௥௘௙‖ଶଶ + ்ܹܹ ଴,        subject to‖ݑ‖ଶߚ =  (1)  ܫ
The two unknowns are u which is the coefficient vector that sparsely approximates the canonical 
tight frame coefficient ܹݔ௥௘௙and { ௜݂}௜ୀଵ௦ which is the set of filters that generates a tight frame. The 
algorithm iteratively solves for the two unknowns by breaking the minimization into two 
minimizations over the two unknowns.  
Image Reconstruction: One of the compressed sensing types of image reconstruction for parallel MRI 
consider the following problem [3]. 
            min௫ ଵଶ∑ ௨ሺܨ‖ ௜ܿ ⊙ ሻݔ − ଶଶே೎௜ୀଵ‖ݕ +  ଵ         (2)‖ݔܹ‖ߣ

In this representation, x is a 1D vector which is the vectorized (concatenating columns vertically 
together) version of the signal to be reconstructed. For dynamic imaging, the signal to be 
reconstructed is 3D if the data is a time sequence of 2D images, or 4D if the data is a time sequence 
of 3D images. ௖ܰ is the number of coils. ܨ௨ is the operator for image acquisition which includes 
Fourier transform and undersampling in k-space. ܿ௜ is the coil sensitivity profile for the ݅௧௛ coil, and y 
is the acquired k-space data written in the vectorized form. The regularization term is the ݈ଵ-norm of 
the signal in the transform domain, where W represents the transform. In this work, we are going to 
compare reconstruction results using the transform learned in Eq. (1) against the transform associated 

with the redundant Haar wavelet. 
Data: The algorithm is validated on clinical cardiac data with 2D in spatial and 1D in time acquired from 
healthy volunteer on a 1.5T clinical MR scanner (MAGNETOM Aera, Siemens Healthcare, Erlangen, 
Germany). In order to measure the performance, we initiate from a set of undersampled data with 
acceleration factor of R=2. We take the reconstruction results from this data as the ground truth and 
simulate the test data with acceleration factor R=6 by downsampling the k-space data by 3 times. The data 
size is 192 pixels by 144 pixels with 30 coils and 21 time phases. 
Results: The reconstruction results are compared with the ground truth by computing the PSNR (Peak 
Signal-to-Noise-Ratio). Figure 2 shows the learnt filters of sizes 2 pixels by 2 pixels, 4 pixels by 4 pixels 
and 8 pixels by 8 pixels. Each little square shows one vector in the set of learnt tight frames { ௜݂}௜ୀଵ௦  in the 
matrix form. The texture of the cardiac images is captured well in the learnt filters. Figure 3 shows the 
PSNR of different filter sizes and with different sparsity transforms at each of the 21 time phases. From this 
figure, we see that the learnt transform outperforms the transform associated with the redundant Haar in 
terms of PSNR. Also, larger filter sizes result in higher PSNR. Examples of the reconstructed images are 
shown in Figure 4. The learnt transform leads to less difference shown in the marked regions of the 
difference image.   
Discussion and Conclusion: We designed a new image reconstruction process for dynamic MRI by first 
obtaining a reference image, learning a tight frame from the reference image and applying the learnt 
operator to the reconstruction. The approach is effective in reconstructing images with complex anatomical 
structure and texture. By comparing the learnt operator against the redundant Haar operator, the learnt 
operator leads to higher PSNR and less image artifacts. 
Disclaimer: The concepts and information presented in this paper are based on research and are not 
commercially available. 
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