
 

 

Fig.2 Comparisons using free breathing stress myocardial perfusion MRI data: 
Each row shows few spatial frames and the image time profile. We observe a 
similar behavior as seen in fig.1. k-t FOCUSS showed some temporal blur (see 
yellow arrow in (b)). BCS had better temporal fidelity but suffered from noisy 
artifacts (see arrows in (c) due to learning noisy patterns. Sparse BCS resulted in 
reconstructions with reduced noise like artifacts without compromising on the 
spatiotemporal fidelity.  

Fig.1 Comparisons using free breathing data: The first, second and third 
rows respectively correspond to a spatial frame, error image, and the 
image time profile. The sampling mask is shown in i.b. The error images 
are scaled up by ~5 fold for better visualization. The kt FOCUSS method 
resulted in motion blurring and loss of temporal resolution due to the 
large motion content (see arrows in ii). The BCS scheme maintained the 
motion content, but suffered largely from noisy artifacts due to learning of 
noisy bases (see arrows in iii.). In contrast, the sparse BCS scheme 
produced image quality with better spatiotemporal fidelity and reduced 
noisy patterns.  

Blind compressive sensing dynamic MRI with sparse dictionaries 
Sajan Goud Lingala1 and Mathews Jacob1 

1The University of Iowa, Iowa city, IA, United States 
 

Introduction:  
The slow acquisition nature of MRI and the risk of peripheral nerve stimulation often 
restrict the achievable spatiotemporal resolution and volume coverage in several dynamic 
MRI applications. Several schemes that model the voxel time series as a sparse linear 
combination of basis functions in a fixed dictionary (eg: Fourier dictionary) were introduced 
to recover dynamic MRI data from undersampled measurements [1][2]. However, a 
challenge is the sensitivity of these methods to inter-frame motion, which decreases the 
sparsity of the representation; these methods suffer from temporal blurring at high 
accelerations. To address this, recently [3] proposed a blind compressive sensing (BCS) 
framework where the dictionary basis and the sparse coefficients were jointly estimated 
from undersampled data.  
The BCS scheme demonstrated improved reconstructions of myocardial perfusion MRI data 
in comparison to existing methods such as compressed sensing and low rank methods [3]. 
However, we observe noise or alias patterns were learned by some of the basis functions in 
some methods at high accelerations; this resulted in speckle like residual artifacts in the 
reconstructed images (see fig.1). The main focus of this work is to further improve the BCS 
scheme by additionally constraining the dictionary. Specifically, we assume the basis 
functions to be sparse. Hence, we term the new method as sparse BCS. 
 
Methods: We model the dynamic signal Casorati matrix (Г) as the product of a spatial 
coefficient matrix and a dictionary matrix which contains the temporal basis functions. ГMxN 

= UMxRVRxN; Here R is the number of basis functions in the dictionary, M and N are 
respectively the number of voxels in each frame and the number of time frames. We 
impose sparsity constraints on U and V and simultaneously estimate them by solving: 
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Here A is the Fourier sampling operator that acquires the measurements b on a specified 
k-t trajectory. The first term ensures data consistency while the regularizing terms make 
the problem well posed.  The main difference with the BCS setting is the sparsity 
constraint on V instead of the Frobenius norm constraint on V that we assumed in [3]. 
The experimental results show that this constraint effectively penalizes the basis 
functions that capture noisy oscillations, which corrupt the BCS basis functions. The 
optimization problem in (1) is non convex; it is convex with respect to one variable, 
if the other is assumed to fixed. Similar to [3], we solve it by using a majorize 
minimize algorithm, which involves the following minimization scheme: 
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Here β1 and β2 are the continuation parameters that determine the accuracy of the 
algorithm. (2) converges to (1) when β1, β2 tends to infinity . For a fixed  β1 and β2 , 
the algorithm iterates between simple steps of (a) shrinkage of U, to update L, (b) 
shrinkage of V, to update R, (c) quadratic problem in U (solved by using a CG 
gradient algorithm), and (d) quadratic problem in V (solved by CG).  To minimize 
the risk of convergence to local minima, we use a continuation strategy. Specifically, 
we iterate the above four steps, starting with low values β1 and β2 . The problem in 
(2) reduces to the low rank solution for low values of continuation parameters. We 
gradually increment these parameters, thus attenuating the low coefficients and basis 
functions. This continuation scheme is seen to provide good convergence.   
 
Results: To evaluate the proposed scheme, we perform retrospective undersampling 
experiments on fully sampled reference data. We compare the proposed sparse BCS 
scheme with the BCS scheme [3] and the k-t FOCUSS scheme [5] that utilizes 
Fourier dictionaries. In figure 1, we consider data from a free breathing cardiac scan 
(NPE X NFE x time: 128 x 128 x60; time resolution ~ 1sec). The data had significant 
inter-frame motion (see ripples in the time profile of fig 1). A radial trajectory with 30 
radial rays with golden ratio angle spacing between rays was used for undersampling. 
In fig 1, we observe k-t FOCUSS to exhibit motion blurring and temporal smoothing 
due to large motion content. The BCS scheme was robust to these compromises and 
preserved the motion well. However, it suffered from noisy artifacts due to few of the 
bases capturing alias patterns. In contrast, the sparse BCS scheme penalized these 
noisy patterns and provides superior reconstructions. 
In figure 2, we show a second example on free breathing cardiac perfusion data. This data was acquired using a radial FLASH saturation recovery sequence (TR/TE = 
2.5/1.3 ms; 5 slices, 72 radial rays uniformly spaced in each frame with uniform rotations across frames, 256 read out points, 4 coils). We considered reconstructing a 
subset of this data. Specifically we performed a single coil single slice reconstruction using 24 radial rays. We observe similar trends as in fig.1. Specifically kt 
FOCUSS had temporal blurring in some frames, BCS learned noisy bases and had noisy artifacts. Sparse BCS was robust to these compromises and provided 
reconstructions with superior spatio-temporal fidelity.  
 
Discussion: We proposed an algorithm to learn dictionary atoms that are constrained to be sparse from undersampled kspace data for dynamic MRI reconstruction. Our 
experiments demonstrate that by promoting sparsity on the dictionary atoms, the learning of noisy basis functions can be considerably reduced.  
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