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Purpose: In recent years, a technique has emerged for the recovery of under-sampled matrix
data, called matrix completion®. In contrast to compressed sensing, the data are not required
to be sparse - rather, the matrix needs to be of low rank for successful recovery to occur.
Further, these methods do not require a specified basis set (asis used in compressed sensing)
but effectively estimate a basis that gives the best low-rank approximation of the data. These
methods start from the observation that an m X n matrix of rank r has r(m + n —r) free
parameters, compared to mn for afull rank matrix. Hence, it is possible to recover alow-rank
matrix or approximation from a dataset that is not fully sampled. This concept has recently
been applied to reconstruction of undersampled k-t MRI data (cardiac cine’ and dynamic
contrast enhanced®), where small amounts of coherent motion or signal enhancement in a
static background produce data suitable for low-rank matrix recovery. Here we describe a
novel recovery agorithm designed for rank-reduced approximation of
undersampled MRI data, based on iterative hard thresholding® (IHT). e,
Caled IHT+MS (matrix shrinkage), we evaluate its ability to recover |, e

both undersampled k-t fMRI and cardiac data compared with the

iterative rank power factorization (IRPF)? (cardiac only) and rank-
constrained fixed point continuation approximation (FPCAr)® methods.
M ethods: The IHT+MS agorithm can be summarised (see Fig. 1):
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where x™ represents the n'" iteration of the estimated k-t matrix, y isthe
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Figure 1 — Schematic of the IHT+MS algorithm.
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SVD to find the r+1" singular value o, 1, after which all singular values
are shrunk to max(o — 0,44, 0). Only the first r singular values survive

true data, data decimated to match undersampling, IHT+MS and FPCAr data.
Results from first 3 principal components were visually indistinguishable.

this shrlnkage and thresholding, producing a rank r data estimate. Because real MRI data is only ever approximately low rank, algorithm recovery
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Figure 4 — Time courses of a line through the
cardiac images at 16x undersampling.

performance can depend on the decay rate of singular values. While IHT performs well where singular
values decay quickly, the IHT+MS agorithm improves performance in slow decay regimes. All tested
agorithms were implemented in MATLAB. Resting state fMRI data were acquired at 3T (106x106x32
spatial points, 512 time points at TR = 836 ms). Retrospective sampling was performed on k, by fully
sampling 4 centre planes and undersampling the remaining 28 planes by 7x for an effective
undersampling factor of 4x. Both algorithms targeted rank 128 reconstructions. Short axis cardiac cine
data were acquired at 3T (interpolated 352x512 spatial points, 100 phases in a single cardiac cycle).
Sampling used 8 centre k, lines and 4/8/16x random undersampling factors on the other 504 lines, and
were reconstructed at rank 20. Sliding window data were regularly undersampled to the same factor.
Results: In the fMRI data, IHT+MS produced the best estimates of the first 100 fMRI PCA
components (Fig. 2, see companion abstract for more details). Cardiac reconstruction fidelity was
assessed using the relative Frobenius norm error between the true and reconstructed magnitude x-t data
and visua inspection of reconstructed images (Figs. 3,4). In the 4x undersampled cardiac data, the
IRPF method produced the lowest error, compared to 1.9% for diding window (image not shown). At
8x and 16x, al images show visible artefacts, although qualitatively the IHT+MS images look least
affected despite dightly higher error values than the sliding window method. In Fig. 3, artefacts are
least apparent in the IHT+MS images. The IHT+MS images instead appear smoothed or filtered,
suggesting a graceful degradation of the spatio-temporal point spread function from the reconstruction
algorithm. Approximate reconstruction times for the cardiac data were 150, 90 and 180 min
respectively for the IHT+MS, FPCAr and |RPF methods (16x4 core 2.66 GHz, 64 Gb RAM).
Discussion: The IHT+MS agorithm shows excellent ability to recover a low rank approximation of
undersampled MRI data, even at undersampling factors beyond the degrees of freedom sampling limit.
Qualitatively, both the spatial and temporal data reconstructed with IHT+M S show the least amount of
artefact contamination, although error values can appear high because the algorithm does not preserve
overal signal power. This may be irrelevant for applications such as resting state fMRI, in which
temporal correlations are more important than signal amplitudes. Convergence is reasonably fast, and
efficient SVD approximation methods can be used, particularly when the k-t matrix is highly non-
square. Such rank-constrained reconstruction algorithms can be sensitive to the choice of rank, and
prior information can be useful in selection of an optimal rank. Finally, these results do not consider
multiple coils, and we expect future integration of IHT+MS with multi-coil measurements to produce
higher fidelity reconstructions.
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