N/2 ghosting artifacts in a radial 3D EPI pulse sequence

Sumeeth Vijay Jonathan¹, Parmede Vakil¹, Yong Jeong¹, and Timothy Carroll^{1,2} ¹Biomedical Engineering, Northwestern University, Chicago, IL, United States, ²Radiology, Northwestern University, Chicago, IL, United States

INTRODUCTION: Echo-planar imaging (EPI)-based techniques are susceptible to modulations in phase between alternating echoes, leading to the well-known N/2 ghosting artifact.¹ Phase differences between alternating echoes are typically corrected using phase correction scans, which acquire reference echoes with phase encoding gradients turned off. We characterize and introduce a phase correction scheme for this artifact in 3D RAZIR,² a new radial 3D GRE-EPI pulse sequence.

METHODS: *Sequence design*: 3D RAZIR uses in-plane radial sampling and through-plane Cartesian sampling to produce a cylindrical 3D *k*-space (Fig. 1). The use of through-plane (k_2) blip phase encoding causes an N/2 ghosting artifact to distort both the coronal $(x-z)$ and sagittal $(y-z)$ views of the 3D volume, and the use of a radial *k*-space trajectory causes the phase to change between acquired radial views.³ In other words, phase errors propagate both within a 3D echo train and between 3D echo trains acquired at different radial views, leading to a "radial 3D N/2 ghosting" artifact. We developed a realtime phase correction scheme that uses internal reference lines^{4} to acquire reference echoes at each radial view. Within each TR (Fig. 1), four reference echoes are acquired with the same in-plane radial angle as the phase encoded echo train. A prephasing gradient is played after the last reference echo is acquired, and the phase encoded echo train is acquired.

FIG 1. Each TR samples a cylindrical 3D *k*-space and acquires reference echoes (shaded) with the same in-plane radial angle as the phase encoded echoes.

Subjects: One healthy volunteer was recruited with IRB approval. *Image acquisition*: In vivo images were acquired using 3D RAZIR with a 3.0 T MR scanner (Tim Trio, Siemens AG, Erlangen, Germany). Scan parameters: TE/TR = $36/81$ ms, readout bandwidth = 1502 Hz/px, echo train length = 76, flip angle = 45°, slices = 76, matrix size = $128 \times 128 \times 76$, voxel size = $1.7 \times 1.7 \times 1.7$ mm³.

Phase correction: In the image domain, the two forward echoes were averaged and the two reverse reference echoes were averaged⁵ for each radial view. The difference in phase angle of the forward and reverse echo was computed for each radial view and fit using polynomial regression to compute a radial view-dependent slope (ϕ_1) and intercept (ϕ_2) . With knowledge of the phase differences due to ϕ_1 and ϕ_2 for each radial view, a spatially-dependent phase shift¹ is applied to the forward and reverse phase encoded echoes to correct for N/2 ghosting.

RESULTS AND CONCLUSIONS: Figure 2 illustrates the dependence of ϕ_1 and ϕ_2 on radial view, indicating how phase modulations between alternating echoes in radial 3D EPI vary by radial view. Figure 3 demonstrates the success of our phase correction scheme before (top) and after (bottom) the algorithm was applied in coronal, sagittal, and axial planes. The N/2 ghosting artifact is visible in the partition direction of the coronal $(x-z)$ and sagittal $(y-z)$ planes where k_z phase encoding occurs. Phase modulations that occur in radial 3D multiecho acquisitions like 3D RAZIR can be corrected with our technique. Our phase correction scheme obviates the need for a separate reference scan.

