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INTRODUCTION: Manifold learning (ML) allows the estimation of low-dimensional underlying signals from of a set of higher dimensional images by assuming they 
lie on an embedded low-dimensional non-linear manifold. In MRI, an image-based ML respiratory self-gating method was proposed [1] by extracting the low-
dimensional respiratory signal from a set of free-breathing liver images (high-dimension). However, this approach estimates the respiratory signal from reconstructed 
fully sampled images and therefore is not applicable to undersampled MRI data or requires undersampled reconstructions. Recently the concept of compressive spectral 
clustering/compressive manifold learning (CML) has been introduced in signal processing theory [2]. CML combines compressed sensing (CS) with ML by learning the 
manifolds directly from a partial set of compressed measurements, provided that the sampling satisfies the Restricted Isometry Property (RIP). Here we propose to use 
the CML concept for respiratory self-gated MRI by extracting the respiratory signal directly from undersampled k-space data, without the need for undersampled 
reconstructions. Results for simulated free-breathing abdominal MR data, using a radial and random Cartesian sampling scheme, show that CML can accurately recover 
the respiratory signal from highly undersampled k-space data. Prospective free-breathing golden radial liver acquisitions, performed in 3 volunteers, further demonstrate 
the feasibility of applying CML directly to undersampled data for respiratory self-gating.   
  

THEORY: ML techniques, such as Laplacian Eigenmaps (LE) [3], estimate a low-
dimensional representation for data while preserving their higher dimensional structure. 
This is done by ensuring data points which are close in the high dimensional space 
remain close in the low dimensional embedding. This is achieved by minimizing a cost 
function based on weighted Euclidian distances. Considering a set of images x1, x2,..,xT  

where each image xi resides in a high N-dimensional space (N being number of voxels 
per image, T being the number of images), the cost function to be minimized is given 

by ∑ ฮܛ୧ െ ,୧ܠ୨ฮଶଶWሺܛ ௜௝	୨ሻܠ where s1, s2,..,sT are the corresponding points in a low K-

dimensional space and W(xi,xi) = exp(-ฮܠ୧ െ  ୨ฮଶଶ/2σ), with σ a scaling parameter. Inܠ

CS theory, a S-sparse signal/image x can be recovered from the undersampled data y 
= ϕx, provided the measurement matrix ϕ satisfies the RIP [4] given as: (1-δ) ‖ܠ‖ଶଶ ൑ ‖૖ܠ‖ଶଶ ൑(1+δ) ‖ܠ‖ଶଶ, for small δ. CML uses the fact that the RIP condition 
guarantees the preservation of the neighbourhood structure as high dimensional signals xi’s are projected onto the M-dimensional measurement space. For two S sparse 

signals xi and xj, RIP implies that, ฮܠ୧ െ ୨ฮଶଶܠ ൎ ฮ૖ܠ୧ െ ૖ܠ୨ฮଶଶ and thus the associated weights W will yield low dimensional embedding similar to the one obtained by 

manifold learning from the original images themselves. Since RIP holds for a randomly undersampled Fourier matrix, here we propose to apply CML directly to 
undersampled k-space data acquired with random or pseudo-random sampling trajectories. A comparison of the standard ML and CML frameworks for MRI is shown in 
Fig.1.   
 

EXPERIMENTS: a) Simulations: The accuracy of CML respiratory motion estimation was investigated for different retrospective sampling schemes (radial and 
random Cartesian) and undersampling factors. Free-breathing 2D liver MRI data was acquired on five healthy volunteers on a 1.5T scanner (Achieva, Philips 
Healthcare) using a b-SSFP acquisition (TR/TE=3/1.46 ms, matrix size: 336x336, FOV: 450mmx450mm). CML from just k-space centre and standard ML from the 
images were also computed for comparison. In addition, a pencil beam respiratory navigator signal (NAV) was obtained from the diaphragm for each volunteer.  

b) In-vivo Experiments: CML respiratory self-gating of the abdomen 
was performed using 2D golden angle radial [5] acquisition. Fully 
sampled free-breathing data was continuously acquired on three healthy 
volunteers on a 1.5T Philips scanner using b-SSFP acquisition 
(TR/TE=3/1.46 ms, matrix size: 160x160, FOV: 320mm x320 mm, scan 
time=20sec). Data was partitioned into a set of real time undersampled 
k-space frames by combining radial profiles such that the acceleration 
factor for each real time k-space frame was 5. A breath-hold (BH) 
acquisition with similar parameters was performed as gold standard. 
 

RESULTS: a) Simulations: A comparison of respiratory signal 
obtained from CML and respiratory beam (NAV) is shown in Fig. 2a-b 
for radial and Cartesian acquisition. The respiratory signal estimated 
with CML showed high fidelity (>98% correlation) to the gold standard 
NAV signal even for very high acceleration factors (20-fold). Using only 
k-space centre for each real time frame (CML-DC), the respiratory 
signal cannot be accurately estimated. Mean values of cross correlation 
(μ) and associated standard deviations across all the volunteers, as a 
function of acceleration factor, for radial and random Cartesian 
trajectories are shown in Fig. 2c-d. CML technique achieved similar 
performance with both trajectories and mean cross correlation value for 
all volunteers was higher than 94%.     
b) In-vivo Experiments: Respiratory gating results with CML are shown 
in Fig.3. Most of the blurring in the ungated reconstruction was removed 
with the CML gated approach. Reconstruction quality with the proposed 
method was comparable with the reconstruction from BH data. 
 

CONCLUSIONS: The use of self-gating CML was demonstrated in 
free breathing abdominal MRI. Accuracy of the estimated respiratory 
signal was similar to that learned from the fully sampled images and 
highly correlated with the gold standard respiratory navigator. CML 
could be potentially extendable to the other applications where main 
interest is in the underlying global structure of a MR sequence, for 
example ECG-gated cardiac reconstructions.  
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Fig.3: Use of proposed Compressive Manifold Learning (CML) for respiratory gating of free 
breathing golden angle liver MRI. Left:  Un-gated reconstruction, centre: CML gated 
reconstruction, right: breath-hold (BH) reconstruction. 

Fig.1: Sequence of steps in standard manifold learning (ML) and proposed
compressive manifold learning (CML) frameworks.  

Fig.2: (a-b) Comparison of respiratory signal obtained from diaphragmatic navigator
(NAV, black curve) with those estimated with ML from fully sampled images (ML-image, 
blue curve), 5x and 20x undersampled k-space (CML, orange and red curves), and k-space 
centre only (CML-DC, green curve) for radial and random- Cartesian trajectories. (c-d)
Cross correlation (μ) between NAV and CML as function of acceleration factor (values for
ML-image and CML-DC are also shown). 
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