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TARGET AUDIENCE Scientists and engineers interested in reducing noise in multi-channel ultra-low-field MRI. 
PURPOSE One significant challenge of ultra-low-field (ULF) MRI is the low SNR. This difficulty is partially addressed by 1) using separate magnets for 
polarization and precession fields, and 2) using superconducting quantum interference devices (SQUIDs) to detect the weak magnetic fields in ULF MRI1. 
Since a SQUID array with up to tens or hundreds of sensors can be used in a ULF-MRI system for signal detection, the collection of all spatially localized 
measurements from all sensors may be used to suppress noise that deteriorates theoretical data consistency (DC) across coils. Specifically, as 
demonstrated in accelerated high-field MRI, the k-space data obtained from one receiver coil can be linearly related to k-space data from the adjacent 
coils2,3. This DC constraint can be imposed to reduce noise by iteratively estimating the convolution kernel and reconstructing images. Here, we used 
empirical ULF MRI data to demonstrate that the DC constraint can improve the ULF-MRI data by suppressing noise and improving the peak SNR by a 
factor of approximately 2. 
METHODS Assuming that the coil sensitivity profiles of an MRI detector array are distinct and spatially smooth, each chosen k-space data point of a coil 
can be expressed as the linear combination of the k-space data points from all coils in the vicinity of the chosen k-space data point. Mathematically, such 
DC relationship is described as x = G x, where x denotes the concatenation of k-space data from all coils and G is a convolution kernel3. In practice, given 
the data from all coils at the ith iteration, we first estimated the convolution kernel: xi → Gi and then reconstructed images G xi → xi+1 . This process was 
repeated until convergence xi = xi+1. Mathematically, this iteration becomes a minimization problem with the cost |Gx-x|2. We can also include a constraint 
to promote image sparsity such that the cost becomes |Gx-x|2+λ|WFx|1, where F denotes Fourier transform, W is the Total Variation operator, and λ is a 
regularization parameter. 

Empirical ULF-MRI data were acquired with our system using 47 SQUID sensors distributed below the back of the head with field sensitivity of 4 
fT/√Hz. A constant B0 = 50 μT was applied for magnetization precession. We used a 3D spin-echo sequence with TE = 80 / 122 ms to generate hand and 
head images of 6x7.1 / 4x4 mm2 in-plane resolution (slice thickness 10 / 6 mm), with a maximal gradient strength of 85 / 130 μT/m respectively. Before 
each k-space read-out measurement, the sample was polarized in a 22-mT field for 1 s for hand and 0.915 s for head measurements. The total imaging 
time was 35 and 90 minutes for hand and head measurements, respectively. Images were combined using the sum-of-squares (SoS) method or 
regularized SENSE reconstruction4 with coil sensitivity profiles determined from saline phantom images. To quantify the image quality, we calculated the 
peak signal-to-noise ratio (pSNR) of the image as the ratio between the largest pixel value and the background noise fluctuation, which was the square 
root of the mean of the image pixel values outside the imaging object. 

RESULTS Figure 1 shows experimental images of the right hand of a subject. Our SoS 
images showed five digits and the palm. Notably, there was a clear vertical strip artifact in 
the SoS image, potentially due to the SQUID noise at 3 kHz in our system. The background 
noise σ was 0.021. The data consistency constraint alone (λ = 0) reduced the vertical strip 
artifact and the background noise (σ = 0.012) significantly. Applying the data consistency 
constraint also increased the pSNR (cyan texts in the figure) from 7.7 to 14.0. Furthermore, 
the use of the sparsity prior (λ = 0.1) gave a reconstruction similar to the one with λ = 0. The 
pSNR was further improved to 57.6 because of the strong suppression of the background 
noise. Figure 2 shows brain images. The shapes of the skull and brain parenchyma were 
observed in the regularized SENSE reconstructions. We found that signals potentially from 
gray and white matter increased as the data consistency constraint was applied (λ = 0). The 
average pSNR across six images increased from 11 to 26. Furthermore, when the sparsity 
constraint was added, the average pSNR dramatically increased to 296. Figure 3 shows the 
regularized SENSE reconstruction of slice 4 using data with an average of 1, 2, 4, and 8 
excitations. The pSNR increased in proportion to the square root of the number of 
excitations for the original data. Using the same data, reconstructions that applied the data 
consistency constraint with λ = 0 had a 2.2-fold pSNR improvement. Specifically, the pSNR 
of the reconstruction with four excitations gave similar pSNR to the reconstruction using 
unaveraged data with the data consistency constraint. This is similar to the 8-average data 
and 2-average data with the data consistency constraint. Using the sparsity constraint with 
λ = 0.01 further improved the pSNR by a factor of 12.  
DISCUSSION Our results demonstrate that using the DC constraint to reconstruct 
multi-sensor ULF-MRI data can reduce the noise level and thus increase the quality of the 
reconstructed image. Note that our implementation did not discard any data point in the 
k-space for accelerated acquisitions, because SNR is the most critical limiting factor in 
current ULF MRI. Instead, the reconstruction algorithm preserved the same amount of the 
data and adjusted the dependency within the data. Our method is different from signal-space projection (SSP)5 and signal-space separation (SSS)6 
methods in MEG processing, both of which are spatial filtering methods to separate measurements into signal and noise components and to remove the 
latter. The DC constraint is a unique k-space property in MRI, while MEG does not have similar spatial encoding. However, we expect that this DC 
constraint can be integrated with SSP and SSS to further suppress noise and thus to improve the quality of ULF MRI. 
REFERENCES 
1 McDermott R., Lee S., ten Haken B. et al. Microtesla MRI with a superconducting quantum 
interference device. Proc Natl Acad Sci U S A.2004; 101:7857-7861. 
2 Griswold M. A., Jakob P. M., Heidemann R. M. et al. Generalized autocalibrating partially parallel 
acquisitions (GRAPPA). Magn Reson Med.2002; 47:1202-1210. 
3 Lustig M. & Pauly J. M. SPIRiT: Iterative self-consistent parallel imaging reconstruction from 
arbitrary k-space. Magn Reson Med.2010; 64:457-471. 

4 Lin F.-H., Kwong K., Belliveau J. et al. Parallel imaging reconstruction using automatic 
regularization. Magn Reson Med.2004; 51:559-567. 
5 Uusitalo M. A. & Ilmoniemi R. J. Signal-space projection method for separating MEG or EEG into 
components. Med Biol Eng Comput.1997; 35:135-140. 
6 Taulu S., Simola J. & Kajola M. MEG recordings of DC fields using the signal space separation 
method (SSS). Neurol Clin Neurophysiol.2004; 2004:35

 

3743.Proc. Intl. Soc. Mag. Reson. Med. 21 (2013) 


