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Target Audience: Clinicians interested in measuring perfusion and quantifying changes in grey matter CBF. 
Introduction: ASL is usually acquired at low resolution, resulting in cerebral blood flow (CBF) measurements that are significantly affected by partial volume (PV) 
effects. This can be particularly problematic in quantifying perfusion in patients where structural atrophy is occurring and can lead to an apparent decrease in perfusion 
without appropriate PV correction. Recent PV correction efforts have focused on a local linear regression (LR) within a kernel to separate voxel signal into GM and 
WM contributions for single-TI data [1][2]. However, this strategy introduces a spatial smoothing dependent on kernel size, leading to a trade-off between minimizing 
smoothing while maintaining sufficient information to satisfy the LR equations. More recently a Bayesian approach has been proposed that exploits the difference in 
white matter (WM) and grey matter (GM) kinetics and employs an adaptive spatial smoothing by combining kinetic information with PV constraints [3]. However, this 
latter method has not been applied to the more common single-TI data where kinetic information is not present. This work investigates whether the Bayesian approach 
offers an advantage over the LR method on single-TI including the extension of the LR method to a 3D kernel. 
Methods: Assuming no contribution from CSF in an ASL difference image, the signal can be modelled as:  

∆M = ∆MGMPVGM + ∆MWMPVWM
 

where PVGM  and PVWM are the partial volume estimates (PVE) for GM and WM obtained from a structural segmentation from a high resolution T1-weighted scan. The 
separate tissue contributions can be estimated using LR by making the assumption that they remain constant over the kernel area. This introduces an inherent spatial 
smoothing based on the kernel size but that also varies with PVE. Previous studies using LR methods have focused on 2D regression kernels, which impose a minimum 
kernel size due to the need to obtain sufficient equations to solve the LR. Recently it has been shown that a 3D kernel of size 3x3x3 is viable and produces less 
smoothing than its 2D equivalent [4]. On the other hand, the more recently proposed Bayesian method starts from the same equation but exploits the differing kinetics 
from the contributions of GM and WM to the difference image, as well as employing a spatial prior to exploit spatial homogeneity in the signal. In single TI data kinetic 
information is not available; however, spatial priors can still be employed. These would operate like the spatial kernel in the LR method, except the effective amount of 
spatial smoothing with this method is determined automatically from the data and can adaptively vary across the brain. Data were analysed according to the standard 
model that does not account for PV effects [6], using the LR method (with kernel sizes in 2D and 3D) and using the spatial prior method using the FSL toolbox 
(www.fmrib.ox.ac.uk/fsl) implementation [7][8]. 
Experimental data: Resting state ASL data of 6 healthy controls was acquired using a pulsed Q2TIPS labelling scheme with background suppression [5]. A 3D-
GRASE read out was employed with total inflow time = 2s, bolus length = 0.8s, matrix size = 64 x 64 x 20, image resolution = 3.75 x 3.75 x 3.8 mm3. The 3D-GRASE 
data was acquired in 8 segments to mitigate the effect of T2 decay. High resolution MPRAGE images were acquired in the same session, matrix size = 208 x 256 x 256, 
resolution = 1.0 x 1.0 x 1.0 mm3. All images were acquired on 3T Siemens Trio using a 32-channel head coil. The T1-weighted images were segmented using SPM8 
into PV fractions for GM, WM and CSF. These were transformed to ASL space via linear registration and resampling to ASL resolution using FSL FLIRT and 
applywarp as in [3]. To estimate the amount of smoothing each of the methods introduced, the spatial gradient was calculated at each voxel for the PV corrected GM 
CBF images in all 3 spatial dimensions, the magnitude of this vector was taken as a measure of detail. Regions of interest (ROI) were defined according to the PV 
fraction in a similar manner to [3], allowing quantitative comparisons to be made of the mean GM CBF and spatial gradient across the PV range for the two methods. 
The ranges were 10-20, 20-30…90-100%, with the expectation that PV corrected GM CBF would not correlate with PV fraction, but that the mean spatial gradient 
would reduce for LR methods whilst increasing for spatial prior method as PV estimate increases due to the adaptive nature of the method. Simulated data were 
generated from a subject PV fraction obtained from a structural image transformed to a 3.75 x 3.75 x 3.8 mm3 resolution. The simulated data was composed of a 
homogenous region of 60 ml/100g/min, with a hypo and hyper intense region of 20 and 100 ml/100g/min respectively. WM CBF was set to 20ml/100g/min. Bolus 
duration of 0.8s and TI of 2s were chosen to match the actual acquisition parameters. 
Results: Figure 1 shows the middle slice of a subject for each of the analyses. The increased smoothing by LR is readily 
apparent, although both LR and the Bayesian PV methods perform well for correcting PV, increasing CBF by a factor of 1.6-
1.7 as previously found for multi-TI data [3]. (see Table 1). Figure 2 shows the variation in mean CBF with increasing PVE 
for the same subject. Across all six subjects, there was a distinct trend for each method; LR estimates were usually higher 
than the Bayesian methods at large PVE, whilst the converse was true for smaller PVE. It is not clear whether LR 
overestimates at high PVE, or if Bayesian methods underestimate at low PVE. In figure 3 we see a comparison of the mean 
spatial gradient at each PVE for the Bayesian method, as well as the LR method for a 3D 3x3x3 and a 2D 5x5 kernel. Both 
LR kernels contain a similar number of voxels and therefore information, yet we see increased retained detail by the 3D 
kernel as it is drawn from a smaller region of the image. However, both LR kernels are substantially out performed by the Bayesian method, which produced a mean 
spatial gradient which was a factor of 1.3 and 1.4 greater than the 3D and 2D kernels respectively. 
Discussion: Adaptive spatial methods appear to be better at retaining detail and reducing smoothing across the whole spectrum of PVE. These advantages must be 
weighed against the increased complexity of the method. LR is currently faster to compute and provides a comparable average GM CBF to spatial methods, although 
requires a user selected kernel. The Bayesian PV method adaptively chooses the degree of smoothing, as was evident in the results. This work indicates that both 
methods are readily applicable to both single and multi-TI data, although currently the LR method when applied using a 3D kernel is best suited to isotropic resolution 
to avoid greater smoothing in the slice direction. 

Subject  Standard Bayesian LR  

1 39.32 61.6 63.6 

2 38.8 66.82 71.64 

3 33.02 56.75 55.9 

4 34.81 55.52 63.49 

5 34.25 57.86 63.38 

6 30.61 54.00 53.54 

Table 1 Mean CBF ml/100g/min for all subjects 
for each method of CBF calculation. 3D 3x3x3 
kernel used for LR. 

 
Fig2 Subject 1: CBF ml/100g/min v GM PVE%. 
LR=red, Bayesian=blue, Std=black 

Subject  Bayesian 
LR 

3x3x3 
LR 
5x5 

1 21.47 18.84 16.93 

2 20.23 16.47 15.99 

3 18.93 14.01 13.71 

4 16.05 13.86 13.20 

5 21.64 17.24 16.49 

6 27.9 15.09 13.94 

Table 2 Mean spatial gradient for all subjects 
for Bayesian and 2 LR kernel size analyses. 

 
Fig3 Subject 1: Spatial gradient v GM PVE%. 
Bayesian=blue, LR 3D=red, LR 2D=black. 
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Fig1 GM CBF maps (ml/100g/min) 
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