In Vivo High-Resolution T1_p MRI of the Wrist at 3T: Usefulness of Realignment during Post-Processing

Hon J Yu¹, Dave Michael Hitt², and Hiroshi Yoshioka³

¹Tu & Yuen Center for Functional Onco-Imaging, University of California, Irvine, Irvine, CA, United States, ²U.S. Clinical Science, Philips Healthcare, Cleveland, OH, United States, ³Radiological Sciences, University of California, Irvine, Orange, CA, United States

Target audience:

Clinicians/researchers in study of cartilage via MR-based mapping techniques for functional assessment.

Purpose:

 $T1_{\rho}$ -map via MRI has been previously demonstrated for quantification of proteoglycan-induced changes in cartilage¹ and thus, presents a potential means for quantitative in vivo functional assessment in detecting early osteoarthritic cartilage damage before the associated morphologic changes in cartilage or clinical symptoms and/or in following up on cartilage repair procedures. Due to the anatomical nature of cartilage being three-dimensionally thin curved structure, however, motion-correction/realignment prior to the pixel-by-pixel fitting necessary for $T1_{\rho}$ -mapping may have a role in overall fitting quality and subsequent quantification. In this study, the value of a realignment based on rigid-body transformation was evaluated in $T1_{\rho}$ -mapping of small joint cartilage using the wrist at 3T.

Methods:

Utilizing an 8-channel wrist coil on a 3T scanner (Philips Medical Systems, Best, Netherlands), T1p scans with varying spin-lock durations (TSL) were performed in coronal orientation with 18 slices using 3D balanced-FFE sequence for T1p mapping (TR/TE=5.9/2.9 ms; voxelsize=0.28x0.28x2-mm). Using a rotary echo based T1_o preparatory pulses,² 4 different TSL values (10,20,40,60 ms) were employed. Each scan was 2.25 min long and the images were processed off-line using a custom processing tool prepared in Matlab (the Math Works, Inc., Natick, MA, USA). The realignment tool of SPM software package3 was utilized in realignment of the images based on rigid-body transformation with respect to the first series (TSL=10) prior to a monoexponential fitting for $T1_{\rho}$ on a pixel-by-pixel basis. In order to assess the effect of motion correction in T1_p values, region-ofinterest (ROI) was manually drawn on the first $T1_{\rho}$ series and the ROIaveraged $T1_{\rho}$ value was obtained from the corresponding $T1_{\rho}$ map and compared to that without motion correction. R²-map was also generated for assessing the overall fitting quality of $T1_{\rho}$ map with and without motion correction.

Results:

Fig. 1 shows T1_p images of wrist cartilage with the 4 different TSL values along with the assessed realignment via rigid body transformation with 6 degrees of freedom in respect to the first series of T1_p. Although still relatively small, the case shown demonstrates a progressively larger translation along the z-axis in $T1_{\rho}$ series up to about 0.5 mm. The $T1_{\rho}$ maps of the corresponding slice with and without the realignment are color-coded and shown in Fig. 2. The three manually drawn ROIs and the correpsonding ROI-averaged $T1_{\rho}$ values from the $T1_{\rho}$ maps with and without realignment are also shown in Fig. 2 along with the ROI-averaged R² values. Despite a small degree of realignment required (< 1° in rotation and < 0.5 mm in translation), a measurable difference ranging from 9 to 22% in mean of ROIaveraged T1_o value was observed between with and without realignment. Due to the thin structural nature of cartilage and a larger translation in z-axis, the two ROIs (green and red) oriented more horizontally (x-axis) exhibited a larger difference in T1_p value (12 and 22%) in comparison to that (9%) of the 3rd ROI (yellow) that is more vertically oriented (z-axis). The mean of ROIaveraged R² value was also substantially higher (0.94-0.96) with realignment in comparison to that without (0.72-0.80).

Discussion:

The results demonstrate that large deviations in T1_p value of cartilage can occur despite of relatively small mis-alignment between T1_p series with varying TSL primarily due to its unique anatomical nature. In light of a subtle change in T1_p value expected in early osteoarthritic cartilage damage, such deviations can be critical in accurate functional assessment of cartilage based on T1_p mapping. In clinical setting where large mis-alignment between T1_p series is more likely, a motion-correction/realignment is therefore necessary prior to generation of the T1_p map for accurate assessment of cartilage based on such mapping technique. Use of only 3 different TSL values (10/20/60 or 10/40/60 ms) for T1_p mapping yielded T1_p values that differ less than 1% from those using all 4 TSL values based on the same ROIs when motion corrected (results not shown) and hence, implementation of less than 7 min. long T1_p mapping protocol is certainly possible for a high-resolution imaging

Fig. 1: $T1_{\rho}$ images with varying TSL: 10, 20, 40, & 60 ms, respectively (above). Realignment with respect to the $1^{st} T1_{\rho}$ image (TSL=10 ms) as assessed with SPM (below).

Fig. 2: Color-coded $T1_{\rho}$ maps w/o and w/ realignment (above). ROIs and ROI-averaged $T1_{\rho}$ values from $T1_{\rho}$ maps w/o and w/ realignment (below).

A Enally	w/	T1 _p (ms)	R ²
	w/o	(ave±std)	(ave±std)
244	ROI	42±10.1	0.94±0.18
	(red)*	37±20.6	0.80±0.34
1	ROI	68±13.8	0.96±0.08
	(yellow)	62±28.5	0.74±0.47
ř.	ROI	51±13.9	0.94±0.13
	(green) *	40±27.2	0.72±0.39
10 (ms)	*: The lar between w/ these 2 ROI relatively lar axis as asses	ger discrepa and w/o co s can be attri ge displacem	ncy in T1 _p prection for buted to the ent along z- alignment

of cartilage. Although no MR-vendor is currently offering $T1_{\rho}$ mapping as a post-processing package *per se* to this author's knowledge, the processing techniques utilized in this study, such as a monoexponential based fitting and image realignment, are currently being used in MR-console for generation of T2 and ADC (apparent diffusion coefficient) map by various vendors and thus should easily be applicable for $T1_{\rho}$ mapping in clinical MR-scanner once it is classified as a clinical MR-protocol.

Conclusion:

Motion correction is a necessary step prior to $T1_{\rho}$ mapping for accurate assessment of a thin anatomical structure such as cartilage.

<u>References:</u>

[1] Regatte R, Akella S, Borthakur A, et al. Proton spin-lock ratio imaging for quantification of glycosaminoglycans in articular cartilage. J Magn Reson Imaging 2003;17(1):114-121. [2] Charagundla S, Borthakur A, Leigh J, et al. Artifacts in $T_{1\rho}$ -weighted imaging: correction with a self-compensating spin-locking pulse. J Magn Reson 2003;162(1):113-121. [3] http://www.fil.ion.ucl.ac.uk/spm/software/.