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Purpose:  Prostate cancer is the second most frequently diagnosed cancer and the sixth leading cause of cancer death among men worldwide (1).  
Multi-parametric MRI of the prostate gland utilizing T2-weighted, diffusion weighted, and contrast-enhanced imaging has shown potential to identify 
clinically significant prostate tumors for MR-guided biopsy or focal therapy (2,3). The purpose of this study was to use a semi-automated 
classification of multi-parametric MR images to identify prostate cancer, and to perform a quantitative comparison of the segmentation results with 
histopathology. 
 
MRI Methods:  Our institution’s ethics review board approved this prospective study.  Between 
January and June 2012, twenty-two men scheduled for prostatectomy for biopsy-proven prostate 
adenocarcinoma were recruited for pre-operative MRI of the prostate gland.  After informed 
consent was obtained, the subjects were imaged on a 3T GE MR750 system (GE Healthcare, 
Waukesha, WI) using a 32-channel RF coil. Pulse sequences used included respiratory-triggered 
axial T2 FSE with fat saturation (TE=92 ms, ETL 14, FOV 22 cm, matrix 416 x 224, slice spacing 
4 mm), reduced FOV diffusion-weighted EPI (4), (b values 100, 200, 400, 800 and 1600 s/mm2 
with NEX= 2, 4, 8, 12, and 12, respectively, TR/TE 4000/67 ms, FOV 20 x 10 cm, matrix 128 x 
64, slice thickness 5 mm) and dynamic contrast-enhanced (DCE) MRI with DISCO (5), which is a 
dual-echo SPGR acquisition employing Dixon water-fat separation, a pseudo-random variable 
density k-space segmentation, and a view sharing reconstruction.  A keyhole imaging technique 
was incorporated into the DCE MRI acquisition and reconstruction, resulting in a temporal 
resolution of less than 3 seconds (TR/TE 4.3/1.9ms, FOV 30 cm, matrix 256 x 256, 2 x 2 
acceleration, slice thickness 1.6 mm). 
 
Analysis:  Outlines of the prostate gland, including zonal boundaries, were drawn on the axial T2-
weighted FSE images by a radiologist and saved without the associated MR image.  A single 
expert genitourinary pathologist, who was blinded to the MRI results, examined each 
prostatectomy specimen and manually drew regions of adenocarcinoma on the prostate gland 
outlines to create a “tumor map”.  The Gleason score of each tumor region was also recorded. 
 
An apparent diffusion coefficient (ADC) map was calculated using the b = 100, 200, 400, 800 
s/mm2 images.  The MR images of the prostate gland were segmented into tumor and non-tumor 
regions using the maximum likelihood classification algorithm with ENVI software (Boulder, CO).  
Input for the classifier included the T2-weighted FSE, ADC map, early arterial phase contrast-
enhanced images, and the b=1600 s/mm2 EPI diffusion-weighted images.  Small regions of interest 
representing both tumor and benign prostate tissue on 4 different subjects were used to train the 
classifier. The training regions represented <15% of the total number of pixels to be classified in 
the training data set. The trained classifier was then used to classify the remaining >85% of the 
pixels in the training set, as well as images from subjects not included in the training set. The 
accuracy of the segmented images was assessed on a pixel-by-pixel basis by comparison with the 
pathologist’s tumor maps. 
 
Results:  Representative ADC map, T2-weighted FSE, reduced FOV diffusion-weighted EPI, and 
arterial phase images of the prostate gland are shown in figure 1. Small regions of interest from 
these images were included in the training data set. The result of the maximum likelihood 
classification is also shown, alongside the corresponding tumor map. The classifier accuracy in the 
case shown in figure 1 was 77% (Kappa = 0.55).  In the training data set, the overall accuracy of 
the maximum likelihood algorithm was 85%.  Figure 2 illustrates the results of the maximum 
likelihood classifier in a different subject whose images were not included in the training data set.  
The classifier accuracy for the case shown in figure 2 was 92% (Kappa = 0.77).  In general, 
classification accuracy increased with higher Gleason scores. 

          
Conclusion: Segmentation of multi-contrast MR images of the prostate gland using a supervised classification algorithm correlates well with 
histopathology.  These results show promise for identification of clinically relevant prostate cancer for either MR-guided biopsy or focal therapy. 
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Figure 1:  representative MR images and 
segmentation results. Shown are T2 weighted FSE 
(a), ADC map (b), arterial phase (c), diffusion with 
b=1600 s/mm2 (d), maximum likelihood 
classification (e) and tumor “map” (f) where red 
represents tumor (Gleason 4+3 and 3+4). 

Figure 2:  Maximum likelihood result compared with 
the tumor map in a subject whose images were not 
used to train the classifier.  Red represents tumor 
(Gleason score 4+4) 
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