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Introduction: The paucity of non-invasive tools with sufficient specificity to identify aggressive breast tumors has serious downstream effects, 
contributing to the number of low-risk patients undergoing high-morbidity interventions (eg, radiation or prophylactic mastectomy) [1,2]. While 
dynamic contrast-enhanced (DCE) MRI has shown potential for characterizing and monitoring tumors, the results of such studies are conventionally 
reported in terms of basic summary statistics, such as the median or mean transendothelial transfer coefficient (Ktrans) for an entire tumor [3]. 
However, many tumors will exhibit discrete areas of high perfusion or capillary permeability, which are thought to signify ongoing angiogenesis [4]. 
These angiogenic ‘hot spots’ could potentially yield important diagnostic or prognostic information that will be obscured by simply reporting the 
average Ktrans for the whole tumor. Recent evidence suggests that morphological or ‘shape’ features can also add value, as most benign breast tumors 
exhibit well-defined margins, whereas malignancies are more likely to appear lobulated with ill-defined margins [5,6]. The purpose of this study was 
to evaluate the potential of advanced DCE-MRI combined with shape and texture descriptors to identify malignant breast cancer.  
 
Methods:  We retrospectively studied 52 histologically proven cases (35 women), including 26 benign and 26 malignant tumors. All studies were 
performed at 3T with a dedicated phased-array receive-only coil. DCE-MRI was performed using a 3D gradient echo sequence with fat-saturation 
and the following parameters: 1 min temporal resolution, 6 measurements (time-points), 330 mm FOV, 448 x 314 matrix, 160 slices, 1.0 mm slice 
thickness, TR/TE 4.3/1.6 (ms), and 12 º flip angle. Gadolinium-based contrast agent (0.1 mmol/kg) was injected after the first DCE time point. DCE 
datasets were motion-corrected by an automatic sub-pixel registration algorithm implemented in ImageJ (http://rsbweb.nih.gov) [7].  Ktrans maps  
were computed using NordicICE software (NordicNeuroLab, version 2, Bergen, Norway), assuming that the percent increase in signal was 
proportional to Gadolinium concentration.  Tumor volumes of interest (VOIs) were drawn manually on post-contrast DCE images, then applied to the 
Ktrans maps. Seventy textural features were initially computed including gray-level co-occurrence and run-length matrix features [8]. Shape 
descriptors were computed for 3 orthogonal planes and included basic geometric measures including roundness, eccentricity, and features based on 
lesion topology (eg, number of cavities and branch-points). All textural and shape features were computed using MaZda version 4.6 [8]. For feature 
selection, we identified the most discriminative shape and textural features on the basis of the Fisher coefficient of each (ie, the ratio of between-class 
and within-class variance [9]). We generated logistic regression models by combining the shape and textural features with the highest Fisher 
coefficients and designating 'benign' and 'malignant' as outcomes. We assessed the performance of each model (sensitivity, specificity and accuracy) 
using ROC analysis and compared areas under the ROC curves using the method of DeLong [10].  
 
Results: Representative tumor VOIs for (a) malignant and (b) benign (fibroadenoma) cancers are depicted in Fig. 1. The diagnostic performance of 
shape, textural, and combined shape and textural feature models is provided in Table 1. Although the textural model appeared to achieve higher 
specificity than the shape-only model (and vice-versa), a comparison of areas under the respective ROC curves revealed no significant differences 
between or among any of the logistic regression models for predicting malignancy (P>0.05 for each comparison).  
 
TABLE 1: Diagnostic accuracy of Textural and Shape features 

 

 
FIGURE 1: (a) malignant and (b) benign fibroadenoma tumors 

Logistic Regression Model: Accuracy Se Sp 

Textural: top 3 features (Entropy, Gray-level 
non-uniformity, Short-runs emphasis) 11-12 

 
78 

 
62 

 
85 

Shape: top 3 features (Blair-Bliss ratio13, 
Roundness, circularity) 

 
79 

 
92 

 
65 

Combined Top 4 Shape (Blair-Bliss, 
Roundness), and Textural (Entropy, GLNU) 

 
77 

 
73 

 
81 

Combined Top 6 Shape and Textural features 80 92 65 

 
Conclusion: In this preliminary study, we have identified a potential 
recipe for predicting malignant breast cancer comprising of shape and  

(a)                                              (b) 

textural features. While textural features appear to provide good specificity and modest sensitivity, the converse was true for shape-based models. 
With optimization, and a larger, prospectively designed study, this computer-aided classification approach shows potential to provide improved 
accuracy compared to conventional MRI criteria. 
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