Analytic solution of the optimum flip angle for pass-band SSFP fMRI prescribes high flip angle acquisitions

Steve Patterson^{1,2} and Chris Bowen^{1,2}

¹Dalhousie University, Halifax, NS, Canada, ²Institute for Biodiagnostics (Atlantic), NRC, Halifax, NS, Canada

Introduction Pass-band balanced steady state free precession (pass-band SSFP) is growing in popularity as a functional MRI (fMRI) technique because it offers reduced signal dropout and image distortion compared to gradient-recalled-echo echo-planar-imaging (GRE-EPI), while potentially providing greater blood oxygenation level dependent (BOLD) sensitivity than spin-echo acquisitions. Most pass-band SSFP fMRI studies employ the signal-optimizing flip angle (α_s), given by¹:

$\cos(\alpha_s) = ((T1/T2)-1)/((T1/T2)+1))$ (1)

In this work we derive an analytical expression for the BOLD contrast-optimizing flip angle (α_c), under the assumption that onresonant pass-band SSFP BOLD contrast results only from R_2 changes, with no contribution from frequency shifts². Interestingly, in grey matter at 3T α_c is about 20° larger than α_s . Validating our result against Monte Carlo simulations (which do include frequency shifts), we found that the use of α_c rather than α_s provided 23% more BOLD contrast on-resonance, as well as more uniform BOLD contrast off-resonance.

Theory The on-resonant SSFP signal, S, at $T_E=T_R/2$, is given by²:

$$S = Asin(\alpha)/(Bcos(\alpha) + C)$$

(2)where α is the flip angle, A = sqrt(E₂)(1-E₁), B = -(E₁-E₂), C = 1-E₁E₂, E₁ = exp(-R₁T_R), E₂ = exp(-R₂T_R), R₁ = 1/T₁, and R₂ = 1/T₂. Approximating BOLD activation as a change in the R₂ relaxation rate, we express SSFP BOLD contrast as:

$$\Delta S = S(A_a, B_a, C_a) - S(A_r, B_r, C_r)$$
(3)

where $A_r = A(R_1, R_{2,rest})$, $A_a = A(R_1, R_{2,active} = R_{2,rest} + \Delta R_2)$, etc. Taking the derivative of this expression with respect to flip angle and setting it to zero results in the cubic equation:

 $ax^{3} + bx^{2} + cx + d = 0$ (4)where $x = cos(\alpha)$, $a = (A_aC_aB_r^2 - A_rC_rB_a^2)$, $b = (2A_aC_aC_rB_r + A_aB_aB_r^2 - 2A_rC_rC_aB_a - A_rB_rB_a^2)$, $c = (2A_aB_aC_rB_r + A_aC_aC_r^2 - 2A_rB_rC_aB_a - A_rC_rC_a^2)$, and $d = (2A_aB_aC_aB_r^2 - A_rC_rB_a^2)$, $b = (2A_aC_aC_rB_r + A_aB_aB_r^2 - 2A_rC_rC_aB_a - A_rB_rB_a^2)$, $c = (2A_aB_aC_rB_r + A_aC_aC_r^2 - 2A_rB_rC_aB_a - A_rC_rC_a^2)$, and $d = (2A_aB_aC_aB_r^2 - A_rC_rB_a^2)$, $b = (2A_aC_aC_rB_r + A_aB_aB_r^2 - 2A_rC_rC_aB_a - A_rB_rB_a^2)$, $c = (2A_aB_aC_rB_r + A_aC_aC_r^2 - 2A_rB_rC_aB_a - A_rC_rC_a^2)$, and $d = (2A_aB_aC_rB_r + A_aB_aB_r^2 - 2A_rC_rC_aB_a - A_rB_rB_a^2)$. $(A_a B_a C_r^2 - A_r B_r C_a^2)$. Solving for the roots of this equation, and choosing the root satisfying $|x| \le 1$ that is required for a real flip angle, gives an analytic expression for α_c of the form $\alpha_c = f(T_1, T_2, T_R, \Delta R_2)$.

Methods We compared the analytical solution with Monte Carlo simulations of SSFP fMRI contrast at 3T, following established approaches^{2,3} shown to agree with experiment. Blood vessels were modeled as randomly oriented cylinders having a bloodoxygenation-dependent magnetic susceptibility offset from their surroundings. A simplified grey matter model was used³ consisting of 2% (by volume) radius (R) = $3\mu m$ vessels and 3% R = $100\mu m$ vessels. BOLD activation was simulated by changing the blood oxygenation saturation fraction from 0.67 (resting) to 0.75 (active)². Vessels were embedded in a homogeneous medium having grey

matter relaxation times ($T_1 = 1200 \text{ ms}$, $T_2 = 90 \text{ ms}$). Vessels were treated as impermeable. The intravascular compartment was included in the Monte Carlo model. Intravascular T1 was set to extravascular, while intravascular T₂ was computed from a Luz-Meiboom exchange model fit to SSFP data from in-vitro blood samples at 3T⁴.

Results In Figure 1 we plot the pass-band SSFP ($T_R = 10 \text{ ms}, T_E = T_R/2$) normalized resting signal (S/M₀, top) and corresponding BOLD contrast $(\Delta S/M_0)$ vs. off-resonance frequency from the Monte Carlo simulation at several flip angles. From Eq. 1, α_s = 31°, and from Eq. 4 (using a literature reported BOLD-induced ΔR_2 of -0.4s⁻¹ at 3T⁵), $\alpha_c = 51^\circ$. Using α_c rather than α_{s} , while reducing signal, results in both greater contrast in the pass-band centre (23% more in this example) and more uniform contrast across offresonance frequency (6% variation over the pass-band ($\pm 0.25/T_{\rm R}$) region for α_c , vs. 43% for α_s). The contrast profile from α_c resembles the flat passband signal profile from α_s .

Discussion and Conclusion An order-of-magnitude estimate for ΔR_2 is sufficient to compute α_c . In the above example, $\alpha_c = 51^\circ$ and 52° for $\Delta R_2 = -.01s^{-1}$ and $-1s^{-1}$, respectively, spanning a broad physiological range. The contrast-optimizing flip angle is largely determined by the T₁ and T₂ relaxation times. Using literature-reported relaxation times for grey matter⁶, we found the relationship $\alpha_c \approx \alpha_s + 20^\circ$ to give the contrast-optimizing flip angle to within 10% for B₀ from 1.5-7T. In conclusion, we have derived an analytic expression and formulated a simple rule-of-thumb for the pass-band SSFP fMRI contrast-optimizing flip angle, and have shown it to increase on-resonant BOLD sensitivity and provide more uniform BOLD sensitivity off-resonance.

References

[1] Oppelt et al. Electromedica. 1986;54:15. [2] Miller et al. Magn Reson Med. 2008;60(3):661-73. [3] Kim et al. Int | Imaging Syst Technol. 2012;22(1):23-32. [4] Dharmakumar et al. Magn Reson Med. 2006;55(6):1372-80. [5] Schäfer et al. Magn Reson Mater Phy 2008;21:113-20. [6] Norris et al. J. Magn. Reson. Imaging 2003;18:519-29.