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Introduction    Functional networks of human brain derived from resting state fMRI (rsfMRI) data have drawn increasing interest 
in both research and clinical applications.  Although there are multiple studies on the generation of functional networks [1, 2], 
quantitative characterization of connectomic profiles for distinct functional regions has been rare in literature, likely due to difficulty 
imposed by the well-recognized anatomical variability across individuals.  This abstract presents our recent effort towards 
connectomic profile characterization for distinct cortical regions, taking into account anatomical variability.   

Methods   A 198-subject dataset released by Yufeng Zang in the 1000 Functional Connectomes Project (FCP) was used for this 
study. Five of them were excluded from our analysis due to poor image quality. Our analysis framework includes  the following steps: 
(1) map the preprocessed rsfMRI data (by FCP pipeline) onto the generated central cortical surfaces (based on pial and white matter 
surfaces by FreeSurfer); (2) parcellation of the bilateral cortical surfaces into 200 distinct regions, respectively, by normalized cut [3], 
according to regional BOLD signal homogeneity. Since it is almost impossible to achieve voxel-by-voxel correspondence across 
subjects, region-based correspondence should have superior performance; (3) to find the connectomic profile of a template cortical 
region, and to further alleviate the influence of imperfect image registration, we applied an over complete dictionary learning 
algorithm [4] to a group of connectivity patterns (in matrix form	 , k =400, and n =193) of this region:  
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, which contains sparsity constraints on both the dictionary D and the loadings α.  The dictionary element corresponding to the 
maximal summation of loadings was considered as the profile of this cortical region; (4) Affinity Propagation (AP) clustering [5] of 
resultant connectomic profiles of the entire cortex generated functional networks and their corresponding network profiles.   

 

Results    Figure 1A and 
1B depict examples of 
connectomic profiles for a 
cortical region, posterior 
cingulate cortex or PCC, 
and default mode network 
or DMN, respectively.  As 
highlighted by orange 
arrows in Fig. 1A, the 
learned connectomic profile 
of PCC closely follows its 
raw connectivity pattern, 
e.g., high positive intensity 
of the profile corresponds to 
strong positive connectivity 
while high negative 
intensity corresponds to 

strong negative connectivity. AP clustering of all resultant 400 connectomic profiles for the entire cortex generated 43 resting-state 
functional networks, and Fig. 1B shows the profile representation of DMN. As can be seen, bilateral PCCs have the strongest 
connectivity in DMN, bilateral anterior cingulate cortices and inferior parietal lobules have moderate connectivity, and superior 
temporal cortices demonstrate negative connectivity.   

Discussion and Conclusion    Our results indicate that connectomic profiles can accurately characterize connectivity patterns, 
and can be used for the identification of distinct cortical regions or functional networks. Unlike existing group ICA approaches that 
heavily rely on spatial smoothing and brain registration techniques, the framework described here utilized two measures, cortical 
parcellation by BOLD signal homogeneity and over complete dictionary learning, to account for the anatomical variability across 
individuals. Another particular feature of the present framework is that it not only creates profiles for networks but also for distinct 
functional regions, facilitating building statistical models for these profiles and pinpointing disrupted regions in 
pathological/psychiatric brain disorder datasets. 
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Fig. 1: Examples of connectomic profiles for PCC (A), and DMN (B).  
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