An assessment of motion artefacts in multi band EPI for high spatial and temporal resolution resting state FMRI

Michael E Kelly¹, Eugene P Duff¹, Janine D Bijsterbosch¹, Natalie L Voets¹, Nicola Filippini¹, Steen Moeller², Junqian Xu², Essa S Yacoub², Edward J Auerbach², Kamil Ugurbil², Stephen M Smith¹, and Karla L Miller¹

¹FMRIB Centre, University of Oxford, Oxford, United Kingdom, ²Center for Magnetic Resonance Research, University of Minnesota Medical School, Minneapolis, Minnesota, United States

Purpose: Multiband (MB) echo planar imaging (EPI) is a recent MRI technique capable of acquiring multi-slice, whole brain FMRI data with subsecond temporal resolution. The technique employs MB pulses to simultaneously excite n non-contiguous slices which are then separated by utilizing spatial information in multi-channel receive arrays with parallel imaging reconstruction¹⁻⁴. MB-EPI thereby acquires n images in each EPI echo train as opposed to the single image acquired by conventional "single-band" EPI, and therefore offers increased temporal and/or spatial resolution. Further,

by increasing the temporal degrees-of-freedom, MB-EPI increases the temporal SNR, improving multivariate analyses such as independent component analysis (ICA). However, it is reasonable to expect MB-EPI to exhibit increased motion sensitivity due to the combination of short TR (spin history) and parallel imaging. In this study, the performance of MB-EPI with different acceleration factors was compared to that of standard EPI with respect to sensitivity to subject motion.

Methods: 6 healthy volunteers (both MRI naïve and MRI trained) were scanned on a 3T Siemens Verio scanner equipped with a 32-channel receive-only head coil array. Each volunteer was scanned on 4 occasions in order to compare 2mm MB with acceleration factors of 4 and 8 (MB4-2mm and MB8-2mm) with un-accelerated data at 2mm (MB1-2mm) and the "more conventional" 3mm resolution (MB1-3mm, with GRAPPA R=2) (Table 1). The complete protocol included resting and task conditions, but here we focus on resting-state data. All sequences used partial

Fourier=7/8 and flip angle 90°. 15 minutes of resting FMRI data (eyes open) were acquired using each of the four protocols, under two conditions: (i) volunteers were instructed to remain still (normal motion), and (ii) volunteers were asked to make deliberate, realistic movements throughout the 15 minute scan (bad motion). MELODIC, the ICA tool in FSL^5 , was used to identify and remove artefact components (ICA "clean-up"). Following

alignment to MN152 standard space, all subjects' datasets were temporally concatenated for group-wise ICA (30 and 100-dimensional). Group-ICA spatial maps

Fig. 2: Sample ICA components from post "clean-up", bad motion data.

were dual-regressed into individual datasets to derive subject/sessionspecific spatial maps and associated timecourses⁶. The latter were used to derive session-specific network matrices⁷. Thus we could compare sensitivity and reproducibility of session-level RSN spatial maps and network matrices.

I	Protocol	Isotropic res. (mm)	MB factor	TR (s)	TE (ms)
1	MB-EPI	3	1	3	30
1	MB-EPI	2	1	6.1	36
1	MB-EPI	2	4	1.6	39
1	MB-EPI	2	8	0.8	40

 Table 1: Scanning protocols used to acquire 15 min

 resting FMRI data with normal / bad subject motion

Fig. 1: ICA-based motion correction of multiband data (a) Sample MB4-2mm coronal slice pre "clean-up" (b) motion component identified by ICA (c) Post "clean-up" corrected data.

Results: Figure 1 shows a sample coronal slice of MB4-2mm data resulting from a bad head motion resting FMRI run. The banding artefact present in Figure 1(a) indicates strong interaction of MB with motion. Figure 1(b) shows an ICA spatial map corresponding to motion-related artefacts. Figure 1(c) shows the same image post "clean-up". Normal head motion runs did not demonstrate this motion artefact strongly. In Figure 2, four sample RSNs (identified by 30-dimensional group ICA) from ICA-cleaned, bad motion data from each of the four protocols are shown. The results demonstrate a high level of agreement between the standard MB1-3mm protocol and both MB4-

2mm and MB8-2mm. MB1-2mm performed worst in all cases. Figure 3 illustrates the similarity of the

100-dimensional group-averaged network matrices (full correlation below the diagonal, partial correlation above) between all four protocols. Normal motion, post "clean-up" data provided the highest similarity between both MB4-2mm and MB8-2mm and MB1-3mm (figure 3, black circles). High levels of head motion reduced correlations, but these were improved with ICA "clean-up". MB4-2mm vs MB8-2mm demonstrate slightly higher similarity than standard MB1-3mm with either MB4-2mm or MB8-2mm. Note that these results were acquired with 90⁰ flip angle, which is expected to reduce signal in MB8-2mm by about 15% compared to imaging at the Ernst angle.

Discussion and Conclusions: Although MB-EPI exhibits some motion sensitivity, retrospective "clean-up" of the data using ICA is remarkably successful at removing artefacts. By increasing temporal degrees of freedom, accelerated MB-EPI supports higher spatial resolution, in our case with no loss in statistical significance compared to the standard protocol. In summary, accelerated MB-EPI is an important new MRI technique capable of providing high resolution, temporally rich resting FMRI datasets for more interpretable mapping of the brain's functional networks. *Funded by the NIH Human Connectome Project (1U54MH091657- 01), NIH Grants P30 NS057091, P41 RR08079/EB015894 (Ugurbil) and EPSRC (Miller).*

References: [1] Moeller, et al. *MRM* 2010; 63: 1144-1153. [2] Feinberg, et al. *PLoS One* 2010; 5(12): e15710. [3] Setsompop, et al. *MRM* 2012; 67(5): 1210-1224. [4] Larkman, et al. *JMRI* 2001; 13(2): 313-317. [5] Beckmann & Smith. *IEE TMI* 2004; 23(2): 137-152. [6] Filippini, et al. *PNAS* 2009; 106(17):7209:7214. [7] Smith, et al. *Neuroimage* 2011; 54(2): 875-891.

Fig. 3: Similarity of average network matrices (across all subjects) following 100-dimensional ICA (B=bad motion, N=normal motion, C=post "clean-up")