
Fig.4: Cepstral domain representation of 
simulated fMRI signal 
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Fig.5: Plot showing the simulated input and estimated neuronal response obtained by using parametric 
blind deconvolution (left) and homomorphic deconvolution (right) 
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Introduction: Functional MRI (fMRI) is a Blood Oxidation Level Dependent (BOLD) technique which does not directly measure neuronal activity 
[1]. The measured fMRI signal is assumed to be the linear convolution of latent neuronal response and the Hemodynamic Response Function (HRF). 
The main interest in any fMRI study would be to study the latent neuronal response and since the sources of HRF variability can be non-neuronal in 
nature [2], it is advantageous to deconvolve the HRF from the fMRI signal. This has many applications, especially in the emerging field of causal 
connectivity analysis [3]. Existing approaches have employed parametric methods such as Cubature Kalman filter [4] and dynamic expectation 
maximization [5], wherein the parameters of an expanded biophysical model of the BOLD response are estimated in order to recover the unknown 
HRF and latent neuronal variables. Even though these models, especially the Kalman filter based approach, seem to give excellent results [4], it is 
unclear whether these highly parameterized models have an over fitting problem. To investigate this aspect, we present a method which uses non-
parametric blind deconvolution based on homomorphic filtering and compare it with the performance of cubature Kalman filter-based approach.  

Methods: A sequence of impulses of equal amplitude convolved with a Gaussian like function 
was generated as the hypothetical input (Fig.1). This hypothetical input was then convolved with 
a canonical HRF obtained from SPM (Fig.2). The resultant signal was down-sampled to mimic a 
TR of 1sec, and noise with SNR=2db was added to obtain the simulated fMRI signal (Fig.3). The 
cepstral domain [6,7] representation of the simulated fMRI signal (Fig.4), cx(n), was obtained. ܿ௫ሺ݊ሻ ൌ නߨ12 log	ሾܺሺ݁௝ఠሻሿగ
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where X(ejw) is the Fourier transform of the simulated fMRI signal. Since the HRF and neuronal 
responses are low and high frequency signals respectively, a separation is visible in the cepstrum 
(shown in Fig.4). Subsequent liftering [8] at a particular cutoff quefrency (qc) gave us the latent 
neuronal response. To obtain the approximate threshold quefrency, a grid search was performed. 
An additional factor considered was the length of the FFT; it was varied 0.01 times the length of 

the input so that we can get good cepstral 
resolution. The above process is called 
homomorphic deconvolution. For 
comparison, hemodynamic deconvolution 
of the simulated fMRI data was also 
performed using the cubature Kalman 
filter based approach. 
Results and Discussions: Fig.5 shows the 
comparison between the performance of 
the homomorphic and cubature Kalman 
filter based deconvolutions. The 
correlation between simulated and 
estimated neuronal inputs was 0.4524 and 

0.4624 for homomorphic and Kalman methods, respectively (p<0.05 for both). Importantly, Fig.5 shows that in both cases, the temporal neuronal 
events were correctly estimated. Since the homomorphic method is non-parametric and does not make any assumptions, these results confirm that 
parametric methods such as cubature Kalman filter-based approaches make valid assumptions and are not susceptible to over fitting. 
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