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Target Audience: Investigators using (or considering using) multi-echo acquisitions for functional MRI or other applications. 
 

Purpose: Multi-echo fMRI acquisitions can improve sensitivity (by acquiring more data per unit time) and specificity (by facilitating 
rejection of nuisance variance) in functional MRI [1-3], compared with conventional EPI. Analysis of the multi-echo decays, yielding 
estimates of transverse relaxation rates in each brain voxel, is a case of parallel estimation of many parameters at once; statistical 
theory states that popular maximum likelihood methods (least-squares under Gaussian errors) are inferior to  “shrinkage” approaches, 
such as the James-Stein estimator [4,5]. The purpose of this study was to assess application of the James-Stein shrinkage approach to 
estimation of transverse relaxation rates from multi-echo data. 
 

Methods: Acquisition: Four healthy adults gave informed consent to participate in IRB-approved research. Resting-state data were 
acquired at 7 T using multi-echo BOLD: Following each RF excitation, echo-planar images were acquired at echo times of 10, 30, 50, 
and 70 ms, using a SENSE acceleration factor of 4.0. The TR was 2.6 s, and 140 volumes were acquired in each of two runs; 
acquired/reconstructed voxel size was 2.5x2.5 mm2 / 1.5x1.5 mm2 with a slice thickness of 3 mm plus a 0.5 mm gap. Twenty-nine slices 
were acquired, from the superior aspect of the cerebrum, covering the primary motor network (M1N) and most regions of the default 
mode network (DMN). A high resolution MP-RAGE image was acquired at isotropic 1 mm resolution. Initial analysis: Standard 
preprocessing, including application of COMPCOR [6] to each echo to reduce physiological noise, was applied. The effective 
transverse relaxation rate, R2

*, was computed for each voxel of each volume using least-squares fitting to the echo time decay. A 
goodness-of-fit threshold was used; only voxels within a 95% confidence interval of +/- 20 s-1 were retained. The R2

* time series were 
temporally filtered using a band-pass filter of 0.01 – 0.1 Hz. For each subject, segmentation of the anatomical image was used to 
classify voxels by tissue type (grey matter, white matter, and cerebrospinal fluid). Shrinkage: The James-Stein estimator was applied 

over all voxels of each tissue type at each time point. For each voxel, the adjusted R2
* was R2

*shrink = R2
* + (1−λ)× (R2

* − R2
* ) . The 

shrinkage factorλ is given byλ = (n−3)σ 2 / (R2
*

i− R2
*)2

i=1

n

å , where σ2 is the temporal variance in R2
* prior to band-pass filtering, and R2

*  

denotes the spatial mean within the tissue type.  
Functional connectivity analysis: Seed-based correlation was applied to R2

* volumes using seeds for 
the DMN and M1N. Correlation coefficients were converted to Z scores using the Fisher 
transformation. One-sample T-tests on the 8 Z score maps (i.e., two runs in each of four participants) 
used permutation-based family-wise error correction for multiple comparisons to achieve a false 
positive rate of 0.05. Outcomes using least-squares (“original”) R2

* values were compared to those 
computed from the James-Stein (“improved”) R2

* values.  
 

Results: The James-Stein estimator increased the spatial extent (number of significant voxels) of the 
DMN and M1N by about 2% and 4%, respectively. Table 1 compares the extent of seed-based 
functional networks derived from 
original vs. improved R2

* 
estimates. Shrinkage also 
improved the consistency of 
spatial maps across subjects; the 
first two columns of Table 2 
summarize increased spatial 
concordance in high Z score voxels following 
application of the James-Stein estimator.  The 
shrinkage decreased Z scores in DMN by 0.7% (p=0.01 paired T test); the corresponding decrease was not significant in M1N.  
 

Discussion: Parallel estimation is typically accomplished using maximum-likelihood approaches, even though the empirical Bayes / 
shrinkage approach is theoretically superior [4,5]. In this study, application of the James-Stein estimator yielded modest improvements 
in the sensitivity of seed-based correlation outcome measures. 
 

Conclusion: The James-Stein estimator improves outcome measures derived from multi-echo BOLD data acquired in the resting state.  
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 DMN M1N 

Original  2166 2156 

Shrinkage 2201 2844 

 
 

Number of high Z score 
voxels concordant over 
both runs in all subjects. 

Average Z score 
within each network 

Average temporal variation of R2
* 

within each network 

 DMN M1N DMN* M1N DMN M1N 
Original 73 30 0.410±0.074 0.386±0.028 0.67±0.16% 0.55±0.20% 
Shrinkage 77 38 0.407±0.076 0.377±0.030 0.66±0.16% 0.55±0.20% 

Table 1. Spatial extent (number of 
significant voxels) in default mode 
network (DMN) and primary motor 
network (M1N). 

Table 2. Network measures; asterisk denotes significance by paired T test at p<0.05. 
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