
 

Figure 1. The original and reconstructed diffusion data with each of the 6 algorithms for one 
subject. a) Coronal projections of the original corrupted and post-processed data. b) One 
corrupted axial DWI projection (left column) and colour-coded FA maps obtained using the 6 
post-processing algorithms (columns from 2 to 7). 

 

Figure 2. Results of the TBSS FA analysis for the mixed group. The 
MNI coordinates in a) and b) are the same as in Ref. [5] (Fig. 1 and 
Fig. 2) and are given below of each image. The regions detected with 
significant difference (p < 0.005) in FA of Tourette patients using 
the tbss_fill utility are shown in red. The green colour is used for 
mean skeleton. 
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Introduction: Clinical diffusion imaging is very demanding with respect to acquisition time, on the one hand, and obtaining images of sufficient quality to permit its 
use in various medical treatments, on the other. Multiple artefacts originate either from the subjects such as bulk head motions, cardiac pulsation, respiratory motion, 
involuntary tics and tremor, or hardware related problems, such as table vibration in diffusion-weighted measurements [1-3]. As a result, artefacts can severely degrade 
the resulting images and render the post-processing of diffusion analysis difficult or even impossible. We have developed a novel, robust post-processing framework 
based on the modified least trimmed squares estimator (MLTS) [4]. We have demonstrated that after applying this framework clinical images substantially corrupted by 
different artefacts can be used in further analysis, for example, in TBSS. 

Methods: At the heart of the framework is the MLTS algorithm 
based on the rearranging of the residuals in the non-linear least 
trimmed squares algorithms. The conventional least trimmed 
squares (LTS) algorithm [3] is based on truncation of ordered 
residuals r1<r2<...<rN, where N is a number of diffusion 
gradients. The modified algorithm is rearranging the residuals ri 
in the following manner: vi = abs[ri-median(rj)], and operates 
with newly ordered parameters: v1<v2<...<vN. We applied the 
robust framework to a Tourette patient group where multiple 
artefacts produced by Tourette-related tics corrupted the 
measured datasets. Diffusion-weighted images were acquired on 
1.5T Sonata Vision MR machine (Siemens Medical Systems, 
Erlangen, Germany) with an 8-channel phased array head RF coil 
and a maximum gradient strength of 40 mT/m. The diffusion-

weighted data were acquired using the following parameters: 2 mm slice thickness, no inter-slice gap, repetition time TR = 11000 ms, echo time TE = 89 ms, field-of-
view FOV = 256 × 208 mm2, imaging matrix = 128 × 104, number of slices in the transverse orientation = 71. The Tourette patient (11 patients with corrupted datasets 
and 11 patients without any artefacts) and control group (22 volunteers) selection criteria 
were described in detail in [5].  

Results: In order to demonstrate the advantages of the developed framework we compared 
it with other approaches: LSQ [6], constrained LSQ (KLSQ) [6], RESTORE [1], PATCH 
[2], and original LTS [3]. The results are presented in Fig. 1. The original DWI image 
exhibited many slices corrupted by patient motion (Fig. 

1a). Algorithms such as LSQ, KLSQ and RESTORE experience problems with the signal 
recovering. The PATCH algorithm exhibited acceptable results but produced some 
additional suspicious slices where signal distortions can visually be detected. The LTS and 
MLTS approaches restored the signal with better accuracy compared to the other 
algorithms (Fig. 1b). In Fig. 2 we show the results of the TBSS analysis for a full Tourette 
patient group with and without distorted datasets in order to emphasize the potential use of 
images recovered by the robust framework. The regions with substantially (p<0.005) 
decreased FA in Tourette patients have to be compared with the results obtained in [5]. The 
comparison with Figs. 1 and 2 in Ref. [5] exhibits a good agreement with TBSS results 
obtained here. 

Discussion and Conclusion: We addressed potential problems that frequently arise in 
clinical DTI studies due to the presence of artefacts.  Corrupted dataset can be restored 
using this framework and returned into the clinical studies. The developed approach 
exhibits improved results compared to other methods as demonstrated in Fig. 1. The TBSS 
analysis with recovered datasets exhibits a high reproducibility of the results compared to 
the previous studies (see Fig.2). As an example, our approach might be useful for an 
estimation of other diffusion metrics in the non-Gaussian models or high angular resolution 
experiments where interplay between SNR and data abundance precedes   the problem. 
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