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Introduction: Diffusion-weighted MRI (DWI) is a non-invasive imaging technique that detects thermally driven, random motion of water molecules in living 
tissue and is able to characterize its interaction with cell membranes, macromolecules and potential diffusion barriers in terms of an apparent diffusion 
coefficient ADC with or without restriction. Le-Bihan proposed a bi-exponential model to separate intra- and extracellular diffusion from incoherent motion 
of water molecules within randomly oriented capillaries – IVIM [1-3]. Several studies have utilized IVIM for various clinical applications in the abdomen 
(tumors, liver cirrhosis) and animal experiments [4] although the interpretation of data in the context of classical perfusion remains disputable [5].   
The presence of noise and patient motion in DWI, which cannot be sufficiently eliminated through postprocessing or special acquisition techniques, may 
substantially affect IVIM parameter estimation reliability [6]. Especially low number of b-value DWI suffers from the intrinsic inability to differentiate bulk 
or peripheral motion (whole body movement, bowel motion, breathing, pulsation due to cardiac cycle) from the incoherent molecular motion (diffusion and 
perfusion). The quantitative assessment of IVIM-parameters in the brain is even more complicated due to the fact of its anisotropic diffusion. The 
deconvolution of multi-exponential processes like water diffusion in living tissue is a strongly ill-posed problem and the necessity for a large number of signal 
points and SNR is imminent for a reliable separation of more than one exponential time constant [7-10]. The evaluation of current fitting modalities for IVIM 
data and investigating their limitations in relation to SNR and number of b-values is therefore prudent.   
 

Methods: In the frame-work of Monte Carlo simulations a numerical toolbox was developed in a
high level programming language (IGOR-Pro 6.1, Wavemetrics Inc. OR, USA) to test the ability
and SNR-thresholds of various numerical exponential, multi-exponential fitting and analysis
algorithms for the purpose of IVIM data analysis: i) Levenberg-Marquardt LS, ii) maximum 
likelihood estimates (MLE), iii) genetic algorithm for multi-exponential fitting, iv) non-negative 
least-squares (NNLS), and v) regularized NNLS.  
Data were generated according to a bi- and tri-exponential pulsed field gradient (PFG) diffusion
model (generalized Stejskal-Tanner equation [11]) with multiple b’s (3 to 64), b-values and 
spacing of b-values, diffusion coefficients, and SNR:                             were DF are the indi-
vidual diffusion fractions for each diffusion coefficient D. Noise was generated with either
Gaussian or Rician distribution for SNR between 10 and 1000. Regularized NNLS with
corresponding diffusion signal kernel was performed with 121 log-spaced diffusion coefficients 
between 0.1 and 1000 μm2/ms (Fig.1, top). Each analyzed signal decay curve results in a
diffusion distribution (spectrum) displaying the diffusion fraction for each apparent diffusion
coefficient ADC (in the following denoted as D) (Fig.1, top right corner). The novelty of this 
hereby introduced approach lies in its semi-continuous nature and therefore its ability to derive
quantitative diffusion fraction maps from any arbitrary D or range of D-values. For example, the 
vascular perfusion fraction vPF can be determined from the inverse solution of the signal decay
function by taking the ratio of the integral D between 10-100μm2/ms and the total integral.  

Fig.1: Screen safe of the Monte Carlo performance fitting simulation 
toolbox in IGOR-Pro 6.1 with Levenberg-Marquardt LS fitting, 
regularized NNLS and genetic multi-exponential algorithm at various 
noise realizations. 

Results: Fig.2 lists a few results in comparison for the extraction of IVIM-model parameters D, D* and vPF (vacular perfusion fraction) from a bi-exponential 
model with the various numerical algorithms. Although mean values for 1000 noise realisations are very robust and comparable between the fitting methods the
variance of the simulated data shows large deviations. Even at hypothetically very high SNR=1000 the conventional IVIM-approach (Mono-exp/S0) with 
fitting a mono-exponential to b-values>100 and estimating the perfusion fraction from the difference of the interception of this fit with the y-axis and the b0-
signal falls strongly behind the slightly more advanced method like bi-exponential routines. For moderate to low SNR>100 the most critical part in obtaining
reliable and reproducible parameter estimations with conventional LS-fit is the proper determination of adequate start values which have to be obtained from
the signal curve (e.g. S0, baseline offset etc.) or must be guessed. That is why generic algorithms and reg.-NNLS routines result in much more robust fitting 
results with lower overall standard deviation even at very low SNR.      

 
Fig.2: Comparison of three parameter estimates for an IVIM bi-exponential model for various fitting routines showing the mean and standard variation for D (denoted as D0), D* (denoted 
as D1) and the perfusion fraction PF after 1000 noise realisations. The best reliability is achieved with genetic algorithms and regularized NNLS.   

Conclusion: Advanced numerical fitting routines like genetic algorithms or regularized NNLS show superior performance in terms of robustness and 
reliability in extracting multi-compartmental parameters from DWI. We hypothesize that their application for the analysis of current IVIM-protocols with 
generally low SNR is advantages.          
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