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Introduction: Diffusion spectrum imaging (DSI), sampling in diffusion encoding space (q-space) and yielding a 
description of the diffusion Ensemble Average Propagator (EAP), is capable of resolving complex distributions of 
intravoxel fiber orientations [1]. However, substantially long scan time (~ 1 hour) has greatly limited its clinical 
application. Recently several methods using compressed sensing (CS) [2,3] have been developed to accelerate DSI [3,4,5]. 
Given the undersampled q-space signal, the CS reconstruction uses an iterative shrinkage algorithm [5] to recover the 
reciprocal diffusion displacement space (r-space) data by imposing sparsifying transform. In this study, we evaluate the 
performance of CS algorithms [3,4,7] on both simulated and in vivo DSI data, with an aim to reduce acquisition time to a 
clinical time frame (~ 20-25 minutes) without jeopardizing critical image information.  
Methods: Simulation Study: Two sets of fiber simulations were performed using Gaussian Mixture Model (crossing 
angles=50°, 60°,70°, FA=0.5, 0.6, 0.7, mean diffusivity=0.77 [8,9]) added with Rician noise (signal-to-noise (SNR) = 35) 
at maximal b values (bmax) 4000 s/mm2 (73 cube, 3.61 radius in grid unit) and 6000 s/mm2 (113 cube, 5.0 radius in grid 
unit). In vivo Study: Two sets of DSI data (1.8x1.8 mm, 128x128) (bmax=6000 s/mm2, DSI515-direction, 
TR/TE=5000/117 msec; bmax=4000 s/mm2, DSI203-direction, TR/TE=9000/110 msec) were acquired on a healthy 
volunteer using a 3T GE MR750 clinical MR scanner equipped with a 32 Channel Head Coil. CS Reconstruction: The 
data were retrospectively undersampled using variable density schemes (acceleration factor (R) =2, 3, 4). Three CS 
reconstruction schemes, including the K-SVD adaptive dictionaries algorithm [10] for sparse representation of the training 
data coupled with the Focal Underdetermined System Solver (FOCUSS) algorithm [11] (Dictionary-FOCUSS), the simple 
ℓ1-norm penalty in the diffusion displacement space with the FOCUSS (ℓ1-FOCUSS), and the ℓ1-norm penalty with the 
Nesterov’s algorithm (ℓ1-NESTA) [11], were evaluated for computation efficiency, error metrics (RMSE between 
reconstruction and noiseless ground truth in simulations, no acceleration and with acceleration in vivo) , generalized 
fractional anisotropy (GFA), and tractograms. An additional DSI123-direction was also acquired for the comparison. 
Results and Discussion: The simulation results in Fig. 1 show that Dictionary-FOCUSS performed better than ℓ1-
FOCUSS and ℓ1–NESTA at both 73 and 113 cubes. Human brain CS DSI data also found the similar trends of RMSE in 
different acceleration factors (results not shown). 

 
Fig.1: Errors in fiber simulation using different CS algorithms in 73 cube (A) and 113 cube (B).  

  
Fig. 2,3: GFA (Fig.2) of a human brain and tractograms (Fig. 3) of the anterior callosal fibers and the dorsal cingulum 
bundles of DSI515 (A), CS-DSI515, R=5 (B), DSI203, (C), CS-DSI203, R=2 (D), and DSI123 (E).  
The results of CS-DSI203 (R=2, Fig. 2D, 3D) based tractography possess comparable quality to the fully sampled 
reference of DSI203 (Fig.2C, 3C) and relatively better than DSI123. Our DSI515 data had inferior quality, likely due to 
low SNR (high bmax) and greater motion (long scan time). Although the results of CS-DSI, using diffusion weighted 
MRI acquired in about 20 minutes by a 3T clinical scanner is promising; the long post-processing time (several days) may 
hinder the application of CS-DSI to the clinical environment.   
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