# EVALUATION OF THE BIEXPONENTIAL MODEL FOR THE DESCRIPTION OF DIFFUSION DATA ACQUIRED WITH MULTIPLE B-VALUES

Letizia Squarcina<sup>1</sup>, Denis Peruzzo<sup>1</sup>, Filippo Arrigoni<sup>2</sup>, Fabio Triulzi<sup>3</sup>, and Alessandra Bertoldo<sup>1</sup>

<sup>1</sup>Department of Information Engineering, University of Padova, Padova, Italy, Italy, <sup>2</sup>Neuroimaging Unit, Scientific Institute, IRCCS Eugenio Medea, Bosisio Parini, Lecco, Italy, <sup>3</sup>Neuroimaging Unit, Fondazione IRCCS Ca' Granda, Ospedale Maggiore Policlinico, Milano, Italy, Italy

# INTRODUCTION

Diffusion data of the brain are usually fitted to a single exponential (1EXP) model<sup>1</sup> assuming the existence of a single prevalent component in each voxel. To release this last constraint, under specific conditions of acquisition as multiple b-values, a bi-exponential (2EXP) model can be used. It is thought that the identification of the 2EXP model allows detecting two distinct compartments in a voxel, helping in the identification of a slow diffusion and a fast diffusion component<sup>2, 3</sup>. Aim of this work is to understand if the 2EXP model is better than the 1EXP in describing diffusion data in all brain areas or only in a critical portion of them, and if the 1EXP derived diffusion indexes can be compared to those obtainable with the 2EXP model.

### METHODS

**Dataset:** Eight healthy volunteers (M/F = 3/5, age 28.8 ± 1.7 years) underwent a MRI exam with a 3T 32 channels Philips Achieva. DTI data consisted of 5 acquisitions with different b-values (500, 1000, 1500, 2000, 2500 mm/s<sup>2</sup>) along 32 non-collinear directions. **Analysis:** The 2EXP model  $y = fe^{-bD_1} + (1 - f)e^{-bD_2}$ , (y is the data vector, f the volume fraction of the first component,  $D_1$  and



Monoexponential Biexponential **Fig. 1** – Boxplot representing mean WRSS calculated for the monoexpoential (left) and biexponential (right) model.  $D_2$  the tensors of the two components) was identified with the nonlinear least squares estimator (Levenberg-Marquardt algorithm). The starting points for the parameters were obtained with a linear least-squares fit of the subsets of data composed by the data acquired at 500-1000 mm/ss<sup>2</sup> and 1500-2000-2500 mm/ss<sup>2</sup>. FA<sub>1</sub>, FA<sub>2</sub>, MD<sub>1</sub> and MD<sub>2</sub> were obtained, as well as mFA=f FA<sub>1</sub> + (1-f)FA<sub>2</sub> and mMD=f MD<sub>1</sub>+(1-f)MD<sub>2</sub>. The 1EXP model was identified using the same nonlinear method, FA and MD were computed. Linear correlations among FA, FA<sub>1</sub>, and mFA, and among MD, MD<sub>1</sub>, and mMD were calculated in two manually-drawn ROIs, one where the f estimated values suggest the presence of two compartments (in the corpus callosum, cc-ROI) and one where f values are close to 0, suggesting the presence of a single compartment (in a mixed gray-white matter area, gw-ROI). **RESULTS** 

The weighted residual sum of squares (WRSS) is depicted in Figure 1. Considering the Fig. 1 as well as the goodness of the estimates (not shown), 2EXP shows to be superior in describing the data. In particular, f values and WRSS differences show that 2EXP has more impact in the considered part of corpus callosum. The correlation between FA<sub>1</sub> and FA was 0.43± 0.24 in the cc-ROI and 0.81 ± 0.16 in the gw-ROI. Correlation between mFA and FA was 0.92 ±0.04 and 0.91 ± 0.02 in the same ROIs. Correlation between MD<sub>1</sub> and MD was 0.10 ±0.19 in the cc-ROI and 0.29 ± 0.35 in the



**Fig. 2** – FA calculated with the monoexponential model (left), with the biexponential model (center) and mFA (right). It is to be noted that only FA<sub>1</sub> is represented for the biexponential model. FA<sub>2</sub> is not represented, because of its poor correlation with FA.

gw-ROI. Correlation between mMD and MD was  $-0.02 \pm 0.05$  and  $0.09 \pm 0.14$  in the same ROIs.

#### DISCUSSION AND CONCLUSION

2EXP model fits the data significantly better than 1EXP in all brain areas. The correlations between FA<sub>1</sub>, mFA and FA show that FA is an index that merges information belonging to the 2 compartments, especially in ROIs where the f value supports the presence of 2 components, as the cc-ROI with  $f = 0.61 \pm 0.21$ . In a ROI where the values of f suggest the presence of a single compartment, e.g. in the gw-ROI where  $f = 0.20 \pm 0.08$ , FA<sub>1</sub> is more strongly related to FA. On

the contrary, MD doesn't show relevant relation with  $MD_1$  or mMD. Further study is necessary to obtain an acquisition scheme to make feasible the use of the 2EXP model in the clinical practice.

# REFERENCES

1. Pierpaoli, C, et al, (1996). Diffusion tensor MR imaging of the human brain. Radiology, 201, 3:637-48.

2. Maier, SE, Mulkern, RV (2008). Biexponential analysis of diffusion-related signal decay in normal human cortical and deep gray matter. Magn Reson Imaging, 26, 7:897-904.

3. Maier, SE, Vajapeyam, S, Mamata, H, Westin, CF, Jolesz, FA, Mulkern, RV (2004) Biexponential diffusion tensor analysis of human brain diffusion data. Magn Reson Med, 51, 2:321-30.