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Introduction Diffusion MRI study of short-length scales in porous media and biological systems is usually based on measuring apparent diffusion 
coefficient (ADC) and calculating the surface-to-volume ratio S/V of restrictions by means of the short-time expression [1] 
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(D0 is the free diffusion coefficient, d is the system’s dimensionality); the coefficient c depends on the time-course of diffusion sensitizing gradient 
G(t) (e.g., [1-4]). Eq. (1), generally speaking, is valid at sufficiently short diffusion time, Dt t<< . On the other hand, reliable MR measurements 

require a sufficient dynamic range of MR signal, i.e., sufficiently high b-values. To achieve high b in the short-time regime is a technically 
challenging problem. A promising way to get into the short-time limit is to apply the high-frequency oscillating gradients (OG), for which diffusion 
time t in Eq. (1) can be substituted by the period of a single oscillation 2 /T π ω=  [5,6], whereas the b-value is proportional to a number of 
oscillations N and, therefore, can be high enough. The coefficient c for the OG was numerically considered in [7] for large number of oscillations N. 
Its limiting value at N →∞  was found in [8] for the cos-type OG. However, the validity of the short-time (high-frequency) expansion (1) for the OG 
has never been analyzed. In this communication, we present exact analytical expressions for the coefficient c for the OG with an arbitrary number of 
oscillations N and analyze the validity of the high-frequency expansion.  
Results We consider the OG 0( ) cos( )G Gτ ωτ ϕ= ⋅ − , where G0 is an amplitude, ω is the frequency of oscillations, and φ is an arbitrary phase (

0ϕ =  and / 2ϕ π=  correspond to the cos- and sin-type OG, respectively). The total pulse sequence consists of N full periods of oscillations, 

2 /t N T N π ω= ⋅ = ⋅ . The corresponding b-value is 2 2 3
0( ) (1 2sin ) /Nb N Gπ γ ϕ ω= ⋅ + . For the OG, it is convenient to rewrite Eq. (1) in the form 
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Basing on Eq. (1), the coefficient ( , )c c Nϕ′ ′=  is found in the closed analytical form: 
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where C(x) and S(x) are the Fresnel functions. For 0ϕ =  the coefficient cos ( ) (0, )c N c N′ ′=  varies within a narrow interval: from cos ( 1) 0.81c N′ = =  

to cos ( ) 1 / 2c N′ →∞ = . For any 0ϕ ≠ , the coefficient ( , )c Nϕ′  increases at large N (as N ). The divergence of ( 0, )c Nϕ′ ≠  at large N imposes a 

restriction on the total time: 4/ sinDt t ϕ<< . Thus, for the cos-type OG, cos ~ 1c′  for any N, that leads to the validity condition DT t<< , i.e. the period 

of a single oscillation should be smaller than the characteristic diffusion time. Whereas for the sin-type OG, Eq. (2) is valid when the total diffusion 
time is smaller than the characteristic time Dt .  

     It should be reminded, however, that Eq. (3) is derived based on Eq. (1) which is valid only at short total diffusion time t: Dt t<< , or DN tω<< . 

However, in some cases, expressions similar to Eq. (2) can be obtained under much “softer” conditions. To demonstrate this, we explore a simple 1D 
model of restricted geometry, for which an exact solution to the diffusion problem is available for arbitrary time t, namely, diffusion within a segment 
and restricted by impermeable boundaries. For the cos-type gradients, ADC is found to be practically independent of N (left panel) and is equal to  
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The high-frequency behavior of cosD  in Eq. (4) exactly coincides with that obtained from 

Eqs.(2)-(3). Importantly, Eq. (4) is valid under condition DT t<< . In contrast, for the sin-

type OG, sinD  substantially depends on N (right panel) and is shown to become independent 

on N and described by the same Eq. (4) only under condition NΩ >> , i.e. when the total 
time is small enough: Dt t<< . In the intermediate regime, 1 N<< Ω << , the function 

sin 0/D D  is close to 1/3 (see the line corresponding to 100N = ).  

Conclusion The frequency dependence of ADC and the validity condition of the high-frequency expansion (2) are shown to be substantially different 
for the cos- and sin-type OG. For the cos-type OG, ADC is practically independent of N and Eq. (2) is valid when the period of a single oscillation is 
smaller than the characteristic diffusion time. In contrast, for the sin-type OG, ADC substantially depends on a number of oscillations N. The high-
frequency expansion (2) for the sin-type gradients is valid when the total diffusion time is smaller than Dt , and the coefficient c′  substantially 

depends on N.  
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