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Target Audience: Clinicians and physicists working with models for in-vivo brain microstructure imaging.  
Purpose: We want to determine which models of diffusion MRI are best at describing the signal from in-vivo 
human brain white matter, and how reproducible these results are across acquisition sessions. 
 
Introduction: Diffusion MRI (dMRI) provides a non-invasive probe into the microstructure of biological tissue. 
However, it relies on a mathematical model relating tissue features to the MR signal. As the standard Diffusion 
Tensor (DT) model is known to break down for high diffusion weights (b-values), better descriptive models are 
necessary. Panagiotaki et al.1 provide a taxonomy of models of dMRI consisting of one/two/three compartments, 
from other works2,3,4,5,6. Compartment one, ‘hindered’ in 3D, can be: a Tensor (full DT), a Zeppelin (cylindrically 
symmetric DT) or a Ball (isotropic DT).  Compartment two, 'restricted' in 2D but free in the other direction 
(anisotropic restriction) can be: a Stick (oriented line) or a Cylinder (as Stick, but with non-zero radius). 
Compartment three, isotropically restricted, can be: a Dot (bound fluid), a Sphere (diffusion restricted to a non-zero 
radius), Astrosticks ('Sticks' isotropically in 3D) or Astrocylinders ('Cylinders' in 3D). This work1 uses data from 
fixed rat brains and shows that all three compartments are necessary to explain multi b-value data. Here, we 
perform a similar experiment in-vivo on a human brain using an enriched, massively multi-shell High Angular 
Resolution Diffusion Imaging (HARDI) protocol. We find that, compared with the fixed tissue study1, simpler 
three compartment models emerge, and that the ranking is robust to variations in the data sampling.  
 
Method: Using a PGSE sequence, on a 3T Phillips scanner, and having obtained ethical 
approval, we scan a 31-yr old man in two separate non-stop sessions, each 4hrs long. We then 
repeat this protocol in eight sessions of 1hr. The protocol uses 32 45-directions shells, each 
randomly rotated to enhance the angular resolution, and |G| = 55 or 60 mT/m, δ = 6, 10, 15 or 
22ms, and ∆ = 30, 50, 70 or 90ms. Each shell has three b=0 acquisitions. There are nine 4mm 
thick sagittal slices, acquired with ZOOM-EPI, using a reduced field-of-fiew (FOV) 
technique11. The FOV is centred on the mid-sagittal slice of the Corpus Callosum (CC), to 
which we assume the coherent CC fibres are perpendicular. The image size is 64 x 64 and the 
in-plane resolution 2mm x 2mm. After segmenting the CC, all voxels with FA>0.5 and 
principal eigenvector <5° from the assumed fibre direction were selected. With the voxels 
satisfying these conditions, we create a single dataset by averaging them. Fig.1 shows the full 
data set. We ignore any signal below the observed noise floor of 0.1, and fit 32 models (listed 
in Fig.2) via the open source software tool Camino7. The algorithm uses a non-linear 
Levenberg-Marquardt algorithm, with offset-Gaussian noise8,9. We rank the fitted models 
using the Bayesian Information Criterion (BIC) to balance complexity with goodness-of-
fit. We also test the stability of ranking by drawing at random half the number of samples 
from each dataset to generate 100 Jackknife datasets and refitting all the models. 
 
Results: Fig.2's left column shows the models' BIC score for the 2x4hr dataset. Three compartment models come out best, as in Panagiotaki et al.1. Zeppelin/Tensor 
hindered compartments outperform Ball, and the ranking shows a preference for Dot/Sphere over Astrosticks/Astrocylinders. Because of its simplicity, the Stick is 
slightly preferred by BIC over Cylinder. As in Panagiotaki et al.1, the DT comes out as the worst model. Results from the 8x1hr data are very similar. The matrices 
show the uncertainty in the ranking from 2x4hr dataset (left) and 8x1hr dataset (right) assessed from the Jackknife sampler. Using this scanning protocol, the ranking is 
stable within various randomised subsets variations in both datasets. Fig.3 
compares the fit of the highest and lowest ranked models with the best two-
compartment model.  
 
Conclusions: The ranking we obtain is similar to previous observations from 
fixed tissue1, with minor differences. The fixed-tissue study’s 9.4T pre-clinical 
scanner used much stronger gradients, i.e. much shorter pulses, which makes the 
acquisition much more sensitive to the size of smaller axons. In this study, our 
protocol employs higher angular resolution, which may significantly improve 
more complex models. Fig.3 illustrates that three compartments are necessary to 
capture the signal restriction. Future work will test the reproducibility of these 
results across other subjects, as well as include other models with, e.g., a 
distribution of pore sizes1,5, 10 or fibre dispersion10. 
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Fig.3. Synthesised signal from three representative models (solid line) with raw data (red) for 4 shells only. 

Fig.2: Each model's ranking score (left) and stability for 100 Jackknife samples from the 2x4hr data (left 
matrix) and 8x1hr data (right matrix). In the matrices, ranking frequency (x-axis) given by colour; e.g. 
Zeppelin-Stick-Dot comes top in 100 datasets. BIC score comes from fitting to the original 2x4hr data. 

Fig.1. Total acquired signal. Legend:b-val (δ | Δ | |G|)  
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