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Introduction: Transverse relaxation in a uniform liquid, arising from dipole interactions on a molecular scale, is monoexponential. This follows by 
the virtue of the central limit theorem, from the many orders of magnitude difference between the correlation time of molecular motion (ps) and the 
typical time scale of MRI experiments (ms). Biological tissues possess structural complexity at the mesoscopic scale of micrometers [1], resulting in 
correlation times of ms, which is commensurate with the timing of MRI. The mesoscopic time scale is determined by diffusion of molecules across 
magnetic structure such as paramagnetic cells, iron clusters, contrast doped extracellular space, etc. The mesoscopic complexity induces the spatially-
varying Larmor frequency offset Ω(r) and results in the time-dependent relaxation rate R2(t) that approaches a constant R2

∞ only at long times. Here 
we relate the long-time dynamics of R2(t) to the statistics of large-scale organization of magnetic structure. 

Results are presented in terms of the derivative dR2/dt, which is zero for monoexponential relaxation. The difference in structural organization is 
depicted in the two-point Larmor frequency correlator Γ̄2 (k) = < Ω(k) Ω(-k) >k̂ / V and in particular characterized by the low-k behavior          
Γ̄2 (k→0) ~ k p, for example p = 0 for randomly positioned objects (Poissonian disorder) while for a perfectly ordered lattice p = ∞ [2,3]. Our main 
result for the approach of the asymptote, R2(t) = R2

∞ − const · t −ν +1, with the exponent ν in d dimensions, is given by Eq. (1). 

       (1)                           (2) 

These expressions are obtained by finding the Green’s function of the Bloch-Torrey equation using perturbation theory up to the second order in the 
Larmor frequency offset Ω(r). Here we present a physical picture behind the formal expressions in a way similar to that applied to heterogeneous 
diffusion [3]. Our analytical results are verified though numerical calculations and Monte Carlo simulations as described below. 

Discussion: It follows from the present result that dR2/dt equals the Fourier transformation of the self-energy part [2,4] that characterizes deviations 
from the Lorentzian line shape in the spectral domain. dR2/dt coincides with the temporal correlation function K(t) introduced by Jensen and Chandra 
[5], who analyzed only Poissonian disorder. Here we consider a broad range of structural disorder classes as described below. 

The origin of Eq. (1) and (2) can be understood in terms of well-known diffusion narrowing, as the effective self-averaging of the medium by 
diffusing molecules. The measure is the sample variance (δΩ)2 ≡ < Ω2(r) > of the Larmor frequency. The measured NMR signal from a 
macroscopically large sample is given by the average of the precession phase, s(t) = < exp(−iφ) > ~ exp(−<φ2>/2). Physically, each time a spin moves 
past the Larmor frequency correlation length lc during the corresponding correlation time tc ~ lc

2/D, its phase acquires a random contribution          
~ α = δΩ · tc. Over the long time t ≫ tc the phase effectively acquires N ~ t/tc ≫ 1 such contributions, which results in the variance <φ2> ~ N α2 as the 
major effect according to the central limit theorem. This corresponds to the signal decay s(t) ~ exp(−R2t) with the rate R2 = −d ln s(t)/dt ~ (δΩ)2 · tc. In 
what follows, we find it useful to consider its time derivative, representing this rate as dR2/dtc ~ (δΩ)2.  

The deviation from the above monoexponential relaxation at long, but not infinitely long times, happens as a result of spatial fluctuations of Ω(r). 
Diffusion narrowing is in fact an averaging of medium properties over the diffusion length L(t) ~ (Dt)1/2. This coarse-graining process can be 
described as a smoothing of the original Larmor frequency with a time-dependent Gaussian filter Ω(r) → Ωt(r) ~ exp(−r2 / [2 L2(t)]) ⊗ Ω(r). This 
results in a decreasing dR2/dt ~ (δΩt)

2 with the time dependence determined by the statistics of Ω(r), which we refer to as the disorder type. Using the 
identification Ωt(k) = Ω(k) · exp(−Dk2t / 2) in Eq. (2) yields exactly the same expression and validates these qualitative considerations. 

Simulations: We illustrate our results using four types of structural organization of identical spherical susceptibility inclusions in three dimensions: a 
disordered packing with short-range (Poissonian) correlations (p = 0), a packing approximating a maximally random jammed (MRJ) state (p = 1), a 
shuffled lattice (p = 2), where the spheres are randomly displaced from their lattice positions, and for comparison a regular lattice (p = ∞) [2]. We 
also consider randomly placed long ellipsoids. With those objects effectively being one-dimensional Γ̄2 (k→0) is diverging with p = −1, cf. [3]. The 
Figures below show the exact exponents ν (dashed lines), which for long times are in good agreement with numerical integration in Eq. (2). For the 
regular lattice we observe an exponential decay, which agrees with the artificial exponent ν = ∞. Colored lines show results of Monte Carlo 
simulations of freely diffusing spins with the dephasing strength α = δΩ · tc = 0.10. The second derivative of ln s(t) was obtained using a polynomial 
fitting with a linearly increasing kernel size (up to 20 tc). The exponent ν = 1 for long ellipsoids agrees with ln s(t) ~ t ln t for blood vessels [6]. 

Conclusions: We have shown that the mesoscopic component of the transverse relaxation rate is sensitive to the spatial organization of magnetic 
structure causing this relaxation. The origin of this effect is the self-averaging, which is inherent to diffusion narrowing, when spins are exploring 
microstructure via diffusion. The present results enable an analysis scheme alternative to the previously proposed approach for the spectral domain 
[2], which broadens the possibilities to quantifying magnetic structure (e.g. iron, microvasculature) using measurements in the time domain. 
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