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Target Audience 
The target audience of this abstract are researchers investigating water diffusion properties in biological tissues.  
Purpose 
     Complex cellular microstructure in the biological tissue gives rise to non-Gaussian patterns of water diffusion. Cell or fibre packing density is one 
of the important factors that determines the tortuosity of the porous space and affects diffusion properties (consider, for example, axonal losses 
associated with neurodegenerative diseases and traumatic brain injuries or cell swelling in stroke). In order to 
better understand the fundamental effects of microstructure on the response signal we have studied less complex 
model systems with well-defined properties, such as a recently developed synthetic anisotropic fibre phantom, 
Figure 1, which mimics the extracellular space in the brain white matter. The phantom exhibits a region with the 
gradient of the fibre packing density, f. The primary purpose of this study was to perform a comparative analysis 
of the influence of fibre density on the quantitative metrics in the three non-Gaussian models recently introduced 
in the brain research: the diffusion kurtosis model (Jensen, et al., MRM, 2005), DKM, the lognormal-distribution 
model2, LNDM, and the stretched-exponential model3, SEM. We also analyse the time-dependent behaviour of 
axial, λaxial, (parallel to fibres), and radial, λradial, (perpendicular to fibres) diffusivities in the frame of the 
anomalous diffusion model.   
Materials and Methods 
     The construction of a fibre phantom with a fibre-density gradient, as well as the diffusion experiments 
performed on it, are described in Ref.1. The stimulated echo pulse sequence was used for time-dependent studies 
of λaxial (the major tensor eigenvalue) and λradial (the average of two minor 
eigenvalues) derived by a tensor reconstruction for typical b ≤ 1 μm-2 ms. 
Diffusion attenuation curves in the direction perpendicular to the fibre axis 
(maximum hindrance) were measured using a double-refocused spin-echo 
pulse sequence and analyzed in the range of b ≤ 7 μm-2 ms with LNDM 
(Eqs. (3-5) in Ref.2) and SEM (Eq. (3) in Ref.3), and in the reduced range 
of b ≤  2.5 μm-2 ms with DKM (Eq. (1) in Ref.1). The fitting parameters 
are denoted as follows: Dk (the mean diffusivity, DKM), Dld (the peak 
diffusivity, LNDM), and Dse (the distributed diffusion coefficient, SEM), 
K (the mean excess kurtosis, DKM), σ (the width of the distribution 
function, LNDM), and α (the stretching exponent, SEM). K, σ, and α 
characterize the deviations from the Gaussian model (K=0, σ=0, and α=1).  
Results and Discussions  
     Figures 2a and 2b show the fitted parameters as a function of f in the 
range from 0.46 to 0.71. In this range, the values of Dk, Dld, and Dse 
decreased by factors 2.4, 3.1, and 3.4, respectively, the values of K and σ  
increased by a factor of ≈ 2.3 and ≈ 1.5, respectively, and α decreased by 
a factor of ≈  1.13. An interesting finding is that the largest change in the 
“non-Gaussianness” parameter (K) is accompanied with the smallest 
change in the diffusivity (Dk), whereas the largest change in the diffusivity 
(Dse) is related to the smallest change in α. Thus, all models are 
complementary with respect to sensitivity to f and related imaging 
contrasts. In comparison to the theoretical curves (Sen and Basser, MRI, 
2005), a steep decrease of the diffusivities occurs at smaller f (~ 0.7) than 
predicted for a hexagonal or square packing geometries on approaching 
the critical close pack values of 0.785 (square) or 0.90 (hexagonal). This 
lower value is in a good agreement with the close pack density for random cylinder packing relevant for our phantom. Figure 3a shows λaxial and λradial 
as a function of the diffusion time, td, in the double logarithmic scale. λaxial was close to the bulk water diffusivity independent of f indicating, as 

expected, unrestricted diffusion along the fibres. In contrast, λradial as a function of td is described by the power-law function, 
γλ dradial t∝ , (solid 

lines) in the range of times exceeding one order of the magnitude (0.042 s – 1.024 s). This range can be considered “intermediate” between the short- 
and long-time limits. The slopes were larger the higher fibre density. Figure 3b shows the fitted values of γ as a function of f. For f ~< 0.58, γ exhibits 
a slight linear decrease with f but a steep decrease for higher values. Interestingly, this quasi-critical behaviour of γ is different from that of the above 
non-Gaussian metrics that exhibit more gradual change with f. These and related results are discussed in terms of the underlying mechanisms, i.e. 
anomalous diffusion in restricted geometries, and their relevance for better understanding potential diffusion contrasts in the fibrous tissue. 
Conclusions 
     We demonstrated that all models provide parameters sensitive to fibre density and, thus, potential biomarkers of axonal losses/damage in 
pathological tissue conditions. Neither of the three non-Gaussian models has demonstrated a superior sensitivity of both free parameters 
simultaneously, therefore, all models are complementary to each other. Due to its critical-like behaviour, the power-law exponent in the anomalous 
diffusion model occurs mostly sensitive to f in a certain range of values well below the close pack.   
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Figure 2. Normalised diffusivities (a) and K, α, σ (b) as a function of f. The curves 
in (a) are theoretical predictions based on the Maxwell-Garnett equation (fourth 
order) for a hexagonal (dashed) and square (dotted) packs.   

Figure 3. λaxial and λradial as a function of td (a) and the dependence of γ on f (b). 

   

Figure 1. Fibre phantom (a) with 
the gradient of fibre density (c); 
diffusion takes place in the 
interstitial space (b).  
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