INTRAVOXEL INCOHERENT MOTION MR IMAGING AND DYNAMIC CONTRAST-ENHANCED MRI IN BRAIN TUMORS: CORRELATION OF QUANTITATIVE AND SEMI-QUANTITATIVE PARAMETERS

Moritz Jörg Schneider¹, Michael Ingrisch¹, Birgit Ertl-Wagner², Maximilian Reiser², and Olaf Dietrich¹

¹Josef Lissner Laboratory for Biomedical Imaging, Institute for Clinical Radiology, LMU Ludwig Maximilian University of Munich, Munich, Bavaria, Germany, ²Institute for Clinical Radiology, LMU Ludwig Maximilian University of Munich, Bavaria, Germany

Target Audience: MR physicists and radiologists.

Purpose: Intravoxel incoherent motion (IVIM) MRI can be used to obtain information about tissue microcapillary perfusion properties based on diffusion-weighted acquisitions.¹ The validity and physiologic interpretation of this information remains controversial due to technical and methodological issues. Therefore, we compare perfusion-related parameters obtained by IVIM measurements with cerebral blood volume and flow (CBV,CBF)² as well as semi-quantitative parameters retrieved from dynamic-contrast-enhanced (DCE) MRI in tumorous and normal-appearing white matter.

Materials and Methods: 9 patients with (multiple) gliomas were examined on a 3-Tesla whole-body MRI system. IVIM measurements were performed with a singleshot EPI sequence (spatial resolution 1.7×1.7×3mm3 (20 slices), TR/TE=5000/60ms, 3 averages, 10 b-values (0-1000s/mm²)). Afterwards, the patients underwent DCE-MRI using an view-sharing 3D gradient-echo sequence (TE/TR=0.86/2.29ms) acquiring 200 volumes after double-bolus injection of 0.1mmol/kg Gadobutrol (temporal resolution 2.1s, spatial resolution 2×2×3mm³). Regions of interest (ROIs) were drawn in tumorous tissue (excluding necrosis) and normal-appearing white matter, resulting in a total of 26 ROIs. The IVIM parameters D (tissue diffusivity), f (perfusion fraction) and D*(pseudo diffusivity) were determined by fitting the signal attenuation to a biexponential model.¹ DCE data was quantitatively analyzed with a 2-compartment exchange (2CX), uptake (2CU), and Tofts (2CT) model,^{2,3} for each ROI, the most appropriate model was selected with the Akaike information criterion.³ Additionally, semiquantitative area-under-the-curve (AuC) and maximum signal enhancement (SE_{max}) values were obtained from DCE measurement. Taking the different relaxation times of white matter and blood ^{5,6} and the water content fraction of white matter into account, CBV_{IVIM} was calculated from our median *f* value in white matter.⁴ Using this CBV_{IVIM}, the median D^* in white matter, and values for the capillary geometry in the cat brain cortex ⁷, CBF_{IVIM} was estimated.⁴ Pearson's correlation coefficients between IVIM and DCE MRI parameters were calculated.

Figure 1: Comparison of voxel-wise calculated parameter mapsfrom IVIM measurements with DCE area-under-the-curve map

Results: Median values and standard deviations of IVIM and DCE parameters are summarized in Table 2. Table 1 lists Pearson's correlation coefficients between IVIM and DCE-MRI parameters as well as their respective p-values. IVIM parameter maps show similar features as DCE-MRI AuC maps (Fig. 1). $CBV_{IVIM} = 4.58 \text{ ml}/100\text{ml}$ and $CBF_{IVIM} = 23.60 \text{ ml}/100\text{ml}/\text{min}$ are of the same order as the calculated DCE values and in good agreement with literature values.²

Table 1: Median values(±standard deviation) of IVIM and DCE parameters									
	<i>f</i> [%]	D[mm ² /10 ³ s]	D[mm ² /10 ³ s]	CBV[ml/100ml]	CBF[ml/100ml/min]	AuC	SE _{max}		
Tumorous tissue	18.82±4.60	0.95±0.18	3.63±0.71	5.72±3.16	49.87±36.05	14379±5212	60.10±30.13		
Normal-appearing white matter	10.68±2.10	0.67±0.7	3.09±0.40	1.02±0.36	15.60±29.07	1364±285	7.90±2.10		
					0				

Table 2:	Pearson's correlation	coefficients	(and p-va	lues) l	between	IVIM	and DCE	E param	eters

	D		f		D*		D*×f	
	r	р	r	р	r	р	r	р
CBV	0.548	0.0038	0.686	<0.0002	0.298	0.1395	0.743	<0.0001
CBF	0.563	0.0028	0.588	0.0016	0.266	0.1895	0.649	<0.0004
SE _{max}	0.747	<0.0001	0.792	<0.0001	0.348	0.0812	0.848	<0.0001
AuC	0.788	<0.0001	0.804	<0.0001	0.423	0.0314	0.888	<0.0001

Conclusions: The IVIM perfusion fraction *f* correlates well with CBV and CBF (Table 2) as well as with AuC and SE_{max} (Fig. 2), indicating that IVIM yields perfusion-related information. The fact that there is no significant correlation between D^* and CBF suggests that the CBF increase in the examined tumors is rather due to a higher capillary count than increased blood velocity. All of the DCE parameters correlate best with the product $D^* \times f$ (Table 2, Fig. 2), which reflects a "makeshift flow" ⁴ and is therefore likely to be the best indicator for tissue-perfusion changes.

References: [1] Le Bihan D et al. Radiology 1988;168:497-505,[2] Sourbron et al. MRM 2009;62:205-217,[3] Ingrisch M et al. Invest Radiol 2012;47:252-258,[4] Le Bihan&Turner MRM 1992;27:171-178, [5] Lemke et al. Magn Reson Med 2010;64:1580-1585, [6] Stanisz et al. Magn Reson Med 2005;54:507-512, [7] Pawlik et al. Brain Res 1981;208:35-58

Figure 2: Correlations between *f* and AuC, *f* and SE_{max}, the product $f \times D^*$ and AuC, as well as between $f \times D^*$ and SE_{max}