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Introduction: Dynamic and 4D MRI have been used to understand the functional and metabolic aspects of disease and its progression. Examples include dynamic 
contrast enhancement (DCE) for micro-vasculature of tumors and MR spectroscopic imaging (MRSI) for tissue bio-chemistry. The post-processing strategy for most of 
these protocols consists of obtaining parametric maps using voxel-by-voxel estimation of the model parameters describing the data (e.g. pharmaco-kinetic (pK) model 
for DCE data [1]). The problem with this approach is that model fits are poor due to noise from variety of sources: patient motion, systemic noise and fluctuations. 
Ultimately, this results in “pixelated” maps even within a homogenous tissue. Smoothening with simple one-dimensional filter changes the shape of enhancement 
curves and is not desirable. Recently there has been an increased interest in using spatial prior data and overlapping information for processing of dynamic MRI data, 
thereby improving the confidence in quantification [2, 3, 4]. Previously, a principal component analysis (PCA) based method was described for SNR improvement in 
DCE data, which considered entire ensemble of dynamic 4D data [5]. However, spatial data fidelity is being increasingly recognized as critical for accuracy of 
information derived from DCE data [4].  Therefore, in this work we investigated a block-wise PCA based approach to reconstruct the DCE-MRI data using the 
neighborhood information, to separate noise from true contrast enhancement while preserving the tissue heterogeneity in reconstructed maps. We demonstrate marked 
improvement in data fitting fidelity and improved lesion conspicuity using this approach. The results are presented in DCE phantom as well as prostate cancer cases. 
Methods and Materials: Phantom: The DCE-phantom as described in [3] was used for evaluation errors introduced due to the reconstruction strategy being adopted 
in the study. Patient Data: Data for our study were acquired from two patients with prostate tumor patients. An appropriate IRB approved the study. Imaging: The 
datasets were obtained on a 1.5T GE Signa clinical scanner. The protocol was:  Axial slices, 3D FSPGR sequence with EIS TORSO coil, TE = 1.3 ms, TR = 3.8 ms, FA 
= 15°, TH = 6 mm, matrix size = 256 x256 , FOV  = 260 x 260 mm2, 0.1 mmol/kg Gd-DTPA was injected i.v at 0.3 cc/sec for 100 seconds, 30-80 bolus volumes (~4.5 
s/ volume), in 3-5 mins. DCE data analysis: The entire analysis was performed using completely automated in-house tool developed for DCE analysis within the ITK 
framework [6]. The DCE signal data was converted into concentration units using the baseline images and fixed tissue T1 = 1317 ms. The concentration curves were 
then analyzed on voxel-by-voxel basis to obtain the semi-quantitative (e.g. Bolus arrival time (BAT), Max-slope) parameters. Next the 
DCE concentration data was fit to two-parameter Toft model using non-linear Levenberg-Marquardt procedure to obtain Ktrans and Ve 
estimates [1]. The R2 value of the fit was also recorded to measure the fidelity of the fitting procedure. Single Voxel analysis (SVA): 
The data analyzed as above for each curve on voxel-by-voxel basis was termed as single voxel analysis (SVA). PCA-Reconstruction: 
In this work we used a block based approach to obtain a reconstructed curve using PCA at any given voxel location. The methodology 
was as follows: Given a voxel at location V(x, y, z), we sweep the entire 3D neighborhood of this voxel till all the neighborhoods have 
visited the given voxel at least once [Fig.1]. At each sweep, the curves are stacked in a matrix. For a 3x3x3 neighborhood used in our 
study, each sweep results in 27 curves. Next, PCA is performed on the set of these 27 curves and first two components with largest 
variance are selected for reconstruction. This number was arrived, based on visual inspection of reconstructed curves with different 
variance components, though a more sophisticated cut-off can be used [5]. The PCA reconstructed curve per sweep is stored. Post all 
sweeps per voxel, the resulting curve for that voxel is computed as the median of the stacked PCA reconstructed curves. The PCA based offline reconstruction was 
performed in MATLAB. The parameters from the resultant curve per voxel were obtained as described in DCE data analysis section. Statistical analysis: The semi-
quantitative and pK model parameters were tested for statistical significance between SVA and PCA-based methodologies. Analysis was performed using ANOVA tool 
provided in MedCalc software. We separated the curves with poor SVA fit (R2 < 0.8) to see if the PCA based recon improves the fit.  

Results: PCA based reconstruction did not 
introduce any errors [residual error due to 
reconstruction = 0] for a uniform voxel placed in 
the phantom. As seen in Fig.2 a and b, PCA based 
reconstruction of the dynamic curve at a given 
voxel is smooth, with most of the noisy 

fluctuations in the residual. The smoothening of 
the data using PCA based reconstruction results in 
improved estimation of the bolus arrival time 
(BAT) parameter [Fig 3], especially in the 

peripheral regions where signal is corrupted due to motion. Overall, the fidelity of non-linear fitting is improved 
for PCA recon-data as manifested in increase in R2 value (Table 1), especially when pixels with R2< 0.8 with 

SVA were considered (Fig. 4): For Patient#1, from 0.6 for SVA to 0.85 for PCA based recon. For Patient#2: from 0.66 for SVA to 0.86 for PCA based recon. Since 
BAT estimation is crucial for accuracy of other maps such Max-slope and pK model fitting, these parameters show very less pixilation effects in “PCA” based spatial 
recon DCE data, compared to SVA based parametric maps (Fig. 5 and 6). The effect is more pronounced for semi-quantitative maps, since lack of fitting procedure 
implies they are easily susceptible to noise fluctuations [Fig. 5]. Statistically significant differences were observed between two approaches for BAT, TTP, Max-slope 
and Ktrans parameters [Table 1]. Discussion: We have introduced a methodology for incorporating spatial information using PCA to remove any systemic variations in 
the dynamic DCE data. There is concomitant improvement in fidelity of data fitting to pK-model, thereby improving the confidence in quantification with DCE MRI. 
While PCA gave satisfactory results in our analysis, other data separation methods such as independent component analysis or total variation filter [7] based noise 
cleanup can be used for separation of noisy variations from true dynamic trend in the data. Since DCE analysis is primarily ROI driven, the computational cost of this 
methodology should not be of much concern. In current analysis, we have not performed any tissue classification and used a general cuboidal neighborhood. For 
specific anatomy (e.g. head), we can restrict the neighborhood to be within a particular tissue type (such as grey matter / white matter) and further improve the 
reconstruction fidelity. Conclusions: PCA based reconstruction of dynamic DCE data using spatial information helps to produce smooth parametric maps, while 
preserving the lesion conspicuity. This will improve the accuracy of DCE-MRI quantification and enhance the sensitivity of the method in clinical scenario.  
 

                             
 

Mean_SVA 41.21    0.0115     0.126 0.32 0.89 

Mean_PCA 38.81    0.0095     0.123 0.32 0.93 

Table 1. Parameters from two patient studies 

Parameter BAT Max-slope Ktrans Ve R2 

Mean_SVA 49.22 0.0117 0.073 0.15 0.77 

Mean_PCA 43.99 0.0063 0.068 0.15 0.91 

Figure 1. A cuboidal 
neighborhood mapped 
during each sweep at given
voxel (blue)

Figure 2. The curves at a given voxel location are 
stacked to provide a reliable PCA-recon. The red 
curve shown by bold red arrow in (a) indicates the 
noisy curve at given voxel. 

Figure 3. Bolus arrival time 
(BAT) map is more consistent 
with PCA based recon (bottom 
row) compared to SVA 

Figure 5. Elevated Ktrans map shows focal 
lesions. While the visual conspicuity is 
retained, the quantitative numbers are 
different for PCA and SVA analysis. 

Figure 6. Max slope with PCA-recon 
shows conspicuous lesion, similar to 
fig. 4, compared to SVA-recon. 

Figure 4. Use of PCA based recon
(bottom row) results in improved
fidelity of pK-model fitting to the
DCE data.  
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