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1.Purpose: How to denoise dynamic MRI maps? If the maps are static, e.g. a diffusion or relaxation scan, averaging over a large number T of 
independent acquisitions can reduce noise standard deviation by a factor of T-1/2. But averaging is not suitable when an underlying dynamic of 
interest, e.g. bolus passage, is present as the useful features will be washed out much like in a long-exposure photograph of a fast-moving object. 
Here we show, using Random Matrix Theory (RMT) methods, how to reduce noise in dynamic images, and apply this method to DCE MRI.  
   2.Methods: Consider T successive images of DCE MR data. While noise in each image 
is random, the contribution of noise to the spectrum of the covariance matrix of T >>1 
images is not random and in fact has a distinct universal shape. This shape in the limit of 
large T is given by Marchenko-Pastur (MP) distribution [1], which is the analog of the 
Wigner’s semicircle law in Wigner-Dyson energy level statistics [2] introduced by the 
founders of the RMT. This unique shape of the noise in the covariance matrix allows 
separation of measurement noise and the true physical dynamics of the system. 
Specifically, we consider DCE MR data: T=120 images of size N=n×n where N 
corresponds to the total number of voxels O(104). PCA involves forming the sample 
covariance matrix and finding the S eigenvectors of C corresponding to S largest 
eigenvalues. S has usually been determined heuristically [3,4,5,6,7]. Remarkably, it can be 
determined objectively based on the fact that the noise eigenvalues gather at the lower limit 
of the covariance matrix spectrum and follow MP distribution. The eigenvalues outlying 
the MP distribution represent the significant principal components (PC) which we keep. We 
first test our methodology on a 100×100 phantom constructed as a combination of ten 
diagonal small squares each having its own dynamic signal with different SNRs sampled at 
1 second intervals for a total of 100 seconds, two off diagonal larger rectangles each with a 
static signal, background with zero static signal, and identically and independently 
distributed (IID) N(0,1) noise.  
Applications to DCE MRI: GE EPI images of Gd-DTPA administered at a dose of 0.1 mmol/kg and rate of 5mL/s were acquired at 1 second intervals for a total of 60 seconds and 5 second intervals for another 60 seconds totaling 120 samples. Imaging was performed on a 3-T scanner with an 8-channel phased-array head coil. Further imaging parameters are TR 1000 ms, TE 32 ms, 10 contiguous, 3-mm thick axial slices, matrix 128×128, FOV 220×220mm, flip angle 30°, signal bandwidth 1396 Hz/pixel, and in-plane voxel size 1.7×1.7 mm. 
   3.Results: The spectrum and the superimposed MP distribution for eigenvalues of 
sample covariance matrix of normal IID noise for the phantom are shown in Figure 1. 
MP correctly estimates noise variance and distinguishes between noisy and significant 
eigenvalues. No structural information has been lost according to difference images. 
Further, this difference decreases as T-1/2. Figure 2 shows the eigenvalue spectrum for 
the sample covariance matrix of DCE MR data. Again, MP achieves a 
clear separation between noisy and significant PCs. The difference 
images look mostly random as well. 
   4.Disussion: Given sufficiently large T >>1, the proposed nonlinear 
noise reduction scheme allows one to increase SNR in all dynamic 
images simultaneously with the error decreasing as T-1/2 similar to the 
case of averaging over T images in a static case. 
   5.Conclusion: We presented a nonlinear RMT based noise reduction 
scheme and examine our method on phantom and DCE MRI.  
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Figure 2: Top: Left image shows the 28th

acquisition of the image. Middle image shows
the less noisy version considering 23 PCs. Right 
image shows the difference between these two, 
which is mostly random indicating no or little
structural information loss. Bottom: eigenvalue 
spectrum of sample covariance matrix of DCE
MR data with MP distribution in red. 23
significant eigenvalues are detected. MP 
estimates standard deviation of noise as 16
compared to that of the background voxels 13.   

 

 
Figure 1: Top: the leftmost and middle left images show snapshots 
of the phantom, before and after adding noise, at the 15th and 65th

acquisitions. The middle right images show snapshots of the noise 
reduced versions. The rightmost images show the difference 
between these noisy and reduced noise images. No structural 
information has been lost. Bottom left: eigenvalue spectrum of 
sample covariance matrix of the phantom and MP distribution 
superimposed in red. Four significant PCs are detected. MP 
estimates variance of noise as 0.99 in agreement with the simulated 
value. Bottom right: a metric for error, sum over T of squared of 
difference images divided by TN decreases as T-1/2. Red and blue 
dots correspond to noise reduction by our method for the dynamic 
phantom and averaging for the static phantom respectively. 
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