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Target audience: Scientists and Clinicians with an interest in perfusion MRI 
Introduction: Model free deconvolution is widely used in DSC-MRI analysis despite consistently underestimating cerebral blood flow (CBF) and introducing 
artifactual oscillations in the resulting residue function solution [1][2]. New methods that address these problems are routinely evaluated using simulations, 
commonly referred to as ‘digital phantoms’. Simulation studies are typically based on an exponential residue function, with additional variants such as the box 
function being considered as test of the methods in extreme conditions. However, none of these models may represent the true residue function in normal tissue 
and are likely to be unsuitable to model haemodynamic changes during pathology, such as in ischemia. The recently proposed Control Point Interpolation (CPI) 
deconvolution approach offers the possibility of accurately extracting monotonically decreasing residue functions within an essentially model free analysis [3]. The 
purpose of this study was to investigate residue function variation in normal and infarcted tissue obtained using CPI, and approximate these with different simple 
analytical expressions to examine whether the exponential model is appropriate for use in digital phantoms and, if not, propose a suitable alternative. 
Material and Methods: DSC data were acquired from 8 patients (median age: 65yrs [47 – 85 yrs], M:F=5:3) with 
atherosclerotic diseases under an Institutional Review Board approved protocol. MRI data were acquired on a Siemens 
3T Trio scanner with Diffusion Weighted Imaging (DWI) and GRE-DSC: TR/TE=1.5s/30ms, 78 volumes, 
128x128x22 matrix, 1.7x1.7x5mm3 voxels. An intra-venous bolus injection of 0.1 mmol/kg Magnevist® was 
performed followed by a 20 ml saline flush. DSC images were processed and analysed using the CPI deconvolution 
method [3]. In the CPI method, the tissue response function was estimated at a subset of points and then cubic spline 
interpolation was used to generate the complete smooth residue function. Residue function characteristics were 
evaluated from Regions of Interest (ROI) based on the DWI and the perfusion weighted images. Before ROI selection 
rigid body image registration was performed between perfusion and DWI images using the FMRIB Linear Image 
Registration Tool (FLIRT) from the FSL toolbox [4]. ROIs were selected under two criteria: 1) within a DWI lesion 
(DWI+), (2x2 voxels) and 2) normal perfused regions (normal) in the hemisphere contralateral to the DWI lesion (3x3 
voxels). In total 32 ROIs were selected from eight patients in normal category and 18 ROIs in the DWI+ category. The 
observed residue functions were approximated with analytical residue function expressions using a maximum 
likelihood technique. The following 4 expressions were used to fit to the residue function: a) Exponential: ∙ ; 
b) Bi-Exponential: ∙ ∙ 1 ∙ ∙ ; c) Lorentzian: 1 /	 ; and d) Fermi function: 1 	 	 / 1 	 . The best approximation was judged by the minimum in the root mean squared (RMS) 

error. Statistical significance (p<0.05) for difference in RMS error among models was calculated using a Student 
paired t-test. 

Results: Smooth monotonically decreasing residue 
functions were observed with CPI deconvolution 
method for perfusion analysis of the clinical data. Qualitative differences in the residue function 
shape were observed for the two ROIs, whereby the DWI+ ROI showed a slower decay (Fig 1). 
Figure 1 also shows a representative case with CBF and MTT maps, and two selected ROIs (one 
in diffusion positive infarcted region (red) and other (blue) in normal region). Figure 2 shows 
the RMS error calculated for analytical residue function approximations with respect to the 
clinically observed residue function; smallest RMS error was observed with the bi-exponential 
model for both normal and diffusion positive tissue (fig.2). For normal tissue both bi-
exponential and lorentzian models had significantly lower RMS error (p<0.05) compared to 
exponential and Fermi functions. Figure 3 shows a representative residue function fit, the bi-
exponential fit approximated the in-vivo observed residue function most precisely. Table 1 
illustrates that with bi-exponential function fitting the contribution of fast decay component 
reduced from 0.97 to 0.87 between normal and diffusion positive tissue. The value of fast decay 
constant (τ1) reduced by more than 50% and values of slow decay constant (τ2) also decreased 
signifying higher contribution from slow transit times in diffusion positive tissue. MTT could be 

calculated from the bi-exponential model using  ∙ 	 1 ∙ . The MTT values 

of 2.03sec (1.18-5.66) and 7.05sec (1.75- 168) were observed for normal and DWI+ tissue 
respectively using parameters for bi-exponential model as elaborated in table1. 

Discussion: When assessing or optimising deconvolution methods for DSC-MRI perfusion analysis, exponential and box-car residue functions are most commonly 
used. With CPI deconvolution method it is now possible to investigate deviation in in-vivo residue function shape under pathological variations. In this study the 
clinically observed residue function were fit with four different analytical residue function models in order to determine a reasonable residue function shape for 
digital phantom studies. We showed that bi-exponential residue function expression fits the in-vivo observed residue function more closely with lowest RMS error 
both in healthy and infarcted tissue.  
Conclusion: Bi-exponential residue function serves as a good approximation to healthy and infarcted tissue residue function when constructing digital phantoms 
for DSC-MRI. Reference: [1] L. Østergaard et.al, MRM, vol. 36, no. 5, pp. 715–25, Nov. 1996. [2] O. Wu et.al, MRM, vol. 50, no. 1, pp. 164–74, Jul. 2003. [3] A. 
Mehndiratta et.al, NeuroImage, Sep. 2012. [4] M. Jenkinson et.al, NeuroImage, vol. 17, no. 2, pp. 825–841, Oct. 2002.   

 

 

 
 
 

 
Figure 1: CBF, MTT and DWI image 
of a representative patient with two 
ROIs selected in normal (blue) and 
infarcted (red) tissue. Residue 
functions observed from ROIs are also 
shown with slower decay in infarcted 
tissue ROI. Table 1: Median (min-max) values of parameters observed 

for four analytical models investigated while fitting clinical 
data. 

Normal 
Contralateral 

Tissue 

Bi-
Exponential 

A = 0.97 (0.93-0.99) 
τ1= 0.68 (0.43-0.85) 
τ2= 0.05 (0.02-0.64) 

Exponential τ= 0.63 (0.40-0.78) 
Lorentzian τ= 1.13 (0.91-1.73) 

Fermi 
μ= -1.33 (-136 - 0.12) 
κ= 1.37 (0.85-2.44) 

 

Diffusion 
Positive 

Infarcted 
Tissue 

Bi-
Exponential 

A = 0.87 (0.17-0.98) 
τ1= 0.24 (0.07-0.59) 
τ2= 0.038 (0.005-0.22) 

Exponential τ= 0.21 (0.07-0.55) 
Lorentzian τ= 3.31 (1.31-9.96) 

Fermi 
μ= -43.5 (-389- 11.48) 
κ= 4.12 (1.44-11.86) 

 
Figure 2: RMS Error in approximating clinically observed 
residue functions with four analytical functional models. 
Left: normal tissue, Right: Diffusion positive infarcted 
tissue. 

 

Figure 3: A representative 
residue function from diffusion 
positive ROI showing the fitting 
achieved with four analytical 
residue functions (a. bi-
exponential, b. exponential, c. 
lorentzian and d. Fermi). The 
bi-exponential function appears 
to approximate the in-vivo 
residue function accurately. 
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