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Purpose 
We will use pseudo-continuous arterial spin labeled (pCASL) MRI to measure cerebral blood flow (CBF) and 
identify the amount of CBF variance explained, both voxel-wise and globally, by tissue microstructure as measured 
by structural MRI. 
Methods 
Images were acquired for 61 normally developing children aged 7-17 years. For each subject, pCASL images were 
acquired [1] along with T1-weighted and diffusion tensor images (DTI). A subset of the data (n=30) was used to 
create a population specific templates for each of the modalities using ANTs [2]. The pCASL and DTI templates 
were then aligned to the T1-template to create a single multi-modality reference space. The T1 template then served 
as the basis for multi-atlas labeling using publicly available data sets of whole brain [3] as well as three tissue 
segmentation [4]. Each image for each subject was then aligned to the corresponding component of the multi-modal 
template for brain masking. Intra-subject registration is then used to align all of the brain-masked images for a given 
subject to the T1 image.  
Each subject's T1 image was used to obtain a probabilistic three tissue segmentation using Atropos [2] and a voxel-
wise measure of cortical thickness [5]. The DTI images were used to calculate fractional anisotropy (FA) and mean 
diffusion (MD), while the pCASL data was used to calculate CBF. Finally, the intra-subject warps were composed 
with the T1 subject-to-template warps to align all images into the common template space. In order to examine the 
extent to which structural MR measures influence cerebral blood flow as measured by pCASL, R was used to 
perform voxel-wise linear regression for all voxels in the gray matter according to: 
Full Model : CBF ~ β1 * Prob(gray matter) + β2 * Prob(white matter) + β3 * Thickness  + β4 * FA + β5 * 

MD 

Additionally, we examine how each measure relates the CBF variability by initially limiting the model to the 
probability of gray matter and then adding each factor to the model in a step-wise manner. 
Results 
The average r-squared values for each model are listed in table 1. To visualize the performance of each model, the 
R-squared value for the linear regression at each voxel was used was created an image as illustrated in Figure 1.  
Conclusions 
In all models, the highest R-squared values were found along the gray-white border and superior cortical regions 
tended to have hihger R-squared values than more inferior regions. The addition of metrics derived from DTI 
improved the fit over models 1-3 that relied upon metrics derived from T1 images only, however there remains a 
great deal of variance in the CBF signal that does not appear to be directly determined structural properties of the 
tissue.   
Model     Mean R-Squared      References 
1) GM     0.0415 +/- 0.0572      1. Jain, et. al. Radiology. 263(2) 
2) GM + WM    0.0798 +/- 0.0809      2. http://www.picsl.upenn.edu/ants 
3) WM + WM + Thickness  0.1004 +/- 0.0859      3. Shattuck, et. al. NeuroImage 39(3) 
4) WM + WM + Thickness + FA  0.1213 +/- 0.0904      4. http://www.nirep.org 
5) WM + WM + Thickness + FA + MD 0.1403 +/- 0.0925      5. Das, et.al. NeuroImage 45(3) 

 Figure 1. R-Squared map for model 5 
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