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Purpose 
Voxel-Based Morphometry (VBM) has been widely applied for characterizing brain changes on structural Magnetic 
Resonance Imaging. However in the conventional VBM methods, Gaussian smoothing, which is always used prior to 
General Linear Model (GLM) [1] to integrate imaging signals from a region, proves critical due to lack of the spatial 
adaptivity necessary to optimally match image filtering with an underlying (unknown a priori) region of interest. In this 
work, Optimally-Discriminative Voxel-Based Analysis (ODVBA) [2], as a recently-developed method utilizing a new 
spatially adaptive smoothing scheme to determine group differences, is evaluated in comparison with the conventional 
VBM method, two other spatially adaptive smoothing methods, and two cluster enhancing methods, in three different 
studies on schizophrenia, mild cognitive impairment, and Alzheimer’s disease. 

Method 
The data collected for the three studies include Dataset1 [3]: 69 schizophrenic patients and 79 controls; Dataset2 [4]: 15 
subjects with mild cognitive impairment (MCI) and 15 controls. Dataset3 [5]: 50 MCI subjects had undergone 
conversion to AD and 50 MCI non-converters. A standard image pre-processing protocol [2] was used to generate the 
gray matter RAVENS map, which reflects the tissue density. Then, we implement six different methods of analysis 
including 1) ODVBA: it starts from a regional discriminative analysis, with non-negativity constraints, on a spatial 
neighborhood around each voxel to determine the optimal coefficients that best highlight the difference between two 
groups in that neighborhood. And then the weights determined for a given voxel from all the 
regional analyses it belongs to are combined into a map representing statistically significant 
voxel-wise group differences, using permutation tests; 2) the conventional VBM method: 
Gaussian smoothing with 8mm FWHM plus GLM (abbr. GLM); other two spatially adaptive 
smoothing methods: 3) Propagation-Separation (PS) [6] and 4) wavelet denosing (WL) [7], both 
of which are followed by GLM without Gaussian smoothing; and two versions of Threshold-
Free Cluster Enhancement (TFCE) [8]: 5) the original GLM-based TFCE (G-TFCE) [8] in which 
4mm FWHM is used as suggested, and 6) an ODVBA-based TFCE (O-TFCE) in which the 
TFCE scores are calculated based on the statistical images of ODVBA. FDR is employed to 
correct for multiple comparisons for all above methods. 

Results 
For all six methods, the resulting p value maps are threshold by FDR corrected p=0.01 in 
Dataset1 and FDR corrected p=0.05 in Dataset2 and Dataset3. Note that GLM, PS, and WL did 
not produce significant results after FDR correction in Dataset 2. We focus on the comparisons 
in three criteria. 1) Spatial extent of the group difference: We display the total number of 
detected significant voxels obtained from all methods for three different datasets in Fig. 1. It is 
concluded that ODVBA is more sensitive than GLM since it detects more significant voxlels. PS 
and WL produced smaller significant areas than either GLM or ODVBA. The two cluster enhancing methods, G-
TFCE and O-TFCE, produced larger significant areas than the voxel-based statistical methods, and O-TFCE shows 
stronger statistical power than G-TFCE. For visual inspection, we demonstrate the surface renderings of detected 
regions in Fig. 2 (For limitation of space, only those of ODVBA and GLM are provided). 2) Significance of the group 
difference: On each anatomical region (prior defined), we calculated the t statistic based on means of RAVENS values 
of the detected area per region. We demonstrate the average t values of anatomical regions in Fig. 3. It is clear that 
ODVBA offers the highest t values whereas GLM produces the lowest values. t values of G-TFCE are generally lower 
than O-TFCE, further suggesting that Gaussian smoothing is inferior to our proposed spatially adaptive method. 3) 
Spatial agreement between detected regions and underlying tissue boundaries: In Fig. 4 we show the detected area of a 
small section near the hippocampus. We see that GLM blurs volumetric measurements from the hippocampus with 
such measurements from the fusiform. However, ODVBA delineates a more precise area of significant atrophy, which 
agrees with GM boundaries. Although PS and WL are capable of detecting tissue boundaries, this detection is weak. 
We can also see the G-TFCE and O-TFCE do not blur volumetric measurements as in GLM.  

Conclusions 
In summary, ODVBA demonstrated highest significance in group differences within the 
identified voxels. In terms of spatial extent of detected area and agreement of anatomical 
boundary, it performed better than other tested voxel-based methods and competitively 
with both cluster-based methods. It is worth noting that for all tested criteria, O-TFCE 
performed better than the original G-TFCE, thereby indicating the synergistic value 
between ODVBA and TFCE. 
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Figure 1: The total number of significant 
voxels of different methods. 

Figure 3: The average t values of 
anatomical regions of different methods. 

Figure 4: Results in the local area near the hippocampus. Two representative 
sections are selected from two analyses. Color bar indicates –log (p) value. 
 

Figure 2: Surface renderings of regions detected in the three
datasets. Color bar indicates –log (p) value. 
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